Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Internet Res ; 26: e55302, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941600

RESUMEN

BACKGROUND: Previous mobile health (mHealth) studies have revealed significant links between depression and circadian rhythm features measured via wearables. However, the comprehensive impact of seasonal variations was not fully considered in these studies, potentially biasing interpretations in real-world settings. OBJECTIVE: This study aims to explore the associations between depression severity and wearable-measured circadian rhythms while accounting for seasonal impacts. METHODS: Data were sourced from a large longitudinal mHealth study, wherein participants' depression severity was assessed biweekly using the 8-item Patient Health Questionnaire (PHQ-8), and participants' behaviors, including sleep, step count, and heart rate (HR), were tracked via Fitbit devices for up to 2 years. We extracted 12 circadian rhythm features from the 14-day Fitbit data preceding each PHQ-8 assessment, including cosinor variables, such as HR peak timing (HR acrophase), and nonparametric features, such as the onset of the most active continuous 10-hour period (M10 onset). To investigate the association between depression severity and circadian rhythms while also assessing the seasonal impacts, we used three nested linear mixed-effects models for each circadian rhythm feature: (1) incorporating the PHQ-8 score as an independent variable, (2) adding seasonality, and (3) adding an interaction term between season and the PHQ-8 score. RESULTS: Analyzing 10,018 PHQ-8 records alongside Fitbit data from 543 participants (n=414, 76.2% female; median age 48, IQR 32-58 years), we found that after adjusting for seasonal effects, higher PHQ-8 scores were associated with reduced daily steps (ß=-93.61, P<.001), increased sleep variability (ß=0.96, P<.001), and delayed circadian rhythms (ie, sleep onset: ß=0.55, P=.001; sleep offset: ß=1.12, P<.001; M10 onset: ß=0.73, P=.003; HR acrophase: ß=0.71, P=.001). Notably, the negative association with daily steps was more pronounced in spring (ß of PHQ-8 × spring = -31.51, P=.002) and summer (ß of PHQ-8 × summer = -42.61, P<.001) compared with winter. Additionally, the significant correlation with delayed M10 onset was observed solely in summer (ß of PHQ-8 × summer = 1.06, P=.008). Moreover, compared with winter, participants experienced a shorter sleep duration by 16.6 minutes, an increase in daily steps by 394.5, a delay in M10 onset by 20.5 minutes, and a delay in HR peak time by 67.9 minutes during summer. CONCLUSIONS: Our findings highlight significant seasonal influences on human circadian rhythms and their associations with depression, underscoring the importance of considering seasonal variations in mHealth research for real-world applications. This study also indicates the potential of wearable-measured circadian rhythms as digital biomarkers for depression.


Asunto(s)
Ritmo Circadiano , Depresión , Estaciones del Año , Dispositivos Electrónicos Vestibles , Humanos , Femenino , Ritmo Circadiano/fisiología , Masculino , Adulto , Estudios Longitudinales , Depresión/fisiopatología , Persona de Mediana Edad , Estudios Retrospectivos , Telemedicina/estadística & datos numéricos
2.
J Med Internet Res ; 25: e45233, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578823

RESUMEN

BACKGROUND: Major depressive disorder (MDD) affects millions of people worldwide, but timely treatment is not often received owing in part to inaccurate subjective recall and variability in the symptom course. Objective and frequent MDD monitoring can improve subjective recall and help to guide treatment selection. Attempts have been made, with varying degrees of success, to explore the relationship between the measures of depression and passive digital phenotypes (features) extracted from smartphones and wearables devices to remotely and continuously monitor changes in symptomatology. However, a number of challenges exist for the analysis of these data. These include maintaining participant engagement over extended time periods and therefore understanding what constitutes an acceptable threshold of missing data; distinguishing between the cross-sectional and longitudinal relationships for different features to determine their utility in tracking within-individual longitudinal variation or screening individuals at high risk; and understanding the heterogeneity with which depression manifests itself in behavioral patterns quantified by the passive features. OBJECTIVE: We aimed to address these 3 challenges to inform future work in stratified analyses. METHODS: Using smartphone and wearable data collected from 479 participants with MDD, we extracted 21 features capturing mobility, sleep, and smartphone use. We investigated the impact of the number of days of available data on feature quality using the intraclass correlation coefficient and Bland-Altman analysis. We then examined the nature of the correlation between the 8-item Patient Health Questionnaire (PHQ-8) depression scale (measured every 14 days) and the features using the individual-mean correlation, repeated measures correlation, and linear mixed effects model. Furthermore, we stratified the participants based on their behavioral difference, quantified by the features, between periods of high (depression) and low (no depression) PHQ-8 scores using the Gaussian mixture model. RESULTS: We demonstrated that at least 8 (range 2-12) days were needed for reliable calculation of most of the features in the 14-day time window. We observed that features such as sleep onset time correlated better with PHQ-8 scores cross-sectionally than longitudinally, whereas features such as wakefulness after sleep onset correlated well with PHQ-8 longitudinally but worse cross-sectionally. Finally, we found that participants could be separated into 3 distinct clusters according to their behavioral difference between periods of depression and periods of no depression. CONCLUSIONS: This work contributes to our understanding of how these mobile health-derived features are associated with depression symptom severity to inform future work in stratified analyses.


Asunto(s)
Trastorno Depresivo Mayor , Telemedicina , Dispositivos Electrónicos Vestibles , Humanos , Teléfono Inteligente , Estudios Transversales , Trastorno Depresivo Mayor/diagnóstico , Estudios Retrospectivos
3.
BMC Psychiatry ; 22(1): 136, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189842

RESUMEN

BACKGROUND: Major Depressive Disorder (MDD) is prevalent, often chronic, and requires ongoing monitoring of symptoms to track response to treatment and identify early indicators of relapse. Remote Measurement Technologies (RMT) provide an opportunity to transform the measurement and management of MDD, via data collected from inbuilt smartphone sensors and wearable devices alongside app-based questionnaires and tasks. A key question for the field is the extent to which participants can adhere to research protocols and the completeness of data collected. We aimed to describe drop out and data completeness in a naturalistic multimodal longitudinal RMT study, in people with a history of recurrent MDD. We further aimed to determine whether those experiencing a depressive relapse at baseline contributed less complete data. METHODS: Remote Assessment of Disease and Relapse - Major Depressive Disorder (RADAR-MDD) is a multi-centre, prospective observational cohort study conducted as part of the Remote Assessment of Disease and Relapse - Central Nervous System (RADAR-CNS) program. People with a history of MDD were provided with a wrist-worn wearable device, and smartphone apps designed to: a) collect data from smartphone sensors; and b) deliver questionnaires, speech tasks, and cognitive assessments. Participants were followed-up for a minimum of 11 months and maximum of 24 months. RESULTS: Individuals with a history of MDD (n = 623) were enrolled in the study,. We report 80% completion rates for primary outcome assessments across all follow-up timepoints. 79.8% of people participated for the maximum amount of time available and 20.2% withdrew prematurely. We found no evidence of an association between the severity of depression symptoms at baseline and the availability of data. In total, 110 participants had > 50% data available across all data types. CONCLUSIONS: RADAR-MDD is the largest multimodal RMT study in the field of mental health. Here, we have shown that collecting RMT data from a clinical population is feasible. We found comparable levels of data availability in active and passive forms of data collection, demonstrating that both are feasible in this patient group.


Asunto(s)
Trastorno Depresivo Mayor , Aplicaciones Móviles , Enfermedad Crónica , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/epidemiología , Humanos , Estudios Prospectivos , Recurrencia , Teléfono Inteligente
4.
Pattern Recognit ; 123: 108403, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34720200

RESUMEN

This study proposes a contrastive convolutional auto-encoder (contrastive CAE), a combined architecture of an auto-encoder and contrastive loss, to identify individuals with suspected COVID-19 infection using heart-rate data from participants with multiple sclerosis (MS) in the ongoing RADAR-CNS mHealth research project. Heart-rate data was remotely collected using a Fitbit wristband. COVID-19 infection was either confirmed through a positive swab test, or inferred through a self-reported set of recognised symptoms of the virus. The contrastive CAE outperforms a conventional convolutional neural network (CNN), a long short-term memory (LSTM) model, and a convolutional auto-encoder without contrastive loss (CAE). On a test set of 19 participants with MS with reported symptoms of COVID-19, each one paired with a participant with MS with no COVID-19 symptoms, the contrastive CAE achieves an unweighted average recall of 95.3 % , a sensitivity of 100 % and a specificity of 90.6 % , an area under the receiver operating characteristic curve (AUC-ROC) of 0.944, indicating a maximum successful detection of symptoms in the given heart rate measurement period, whilst at the same time keeping a low false alarm rate.

5.
J Med Internet Res ; 22(9): e19992, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32877352

RESUMEN

BACKGROUND: In the absence of a vaccine or effective treatment for COVID-19, countries have adopted nonpharmaceutical interventions (NPIs) such as social distancing and full lockdown. An objective and quantitative means of passively monitoring the impact and response of these interventions at a local level is needed. OBJECTIVE: We aim to explore the utility of the recently developed open-source mobile health platform Remote Assessment of Disease and Relapse (RADAR)-base as a toolbox to rapidly test the effect and response to NPIs intended to limit the spread of COVID-19. METHODS: We analyzed data extracted from smartphone and wearable devices, and managed by the RADAR-base from 1062 participants recruited in Italy, Spain, Denmark, the United Kingdom, and the Netherlands. We derived nine features on a daily basis including time spent at home, maximum distance travelled from home, the maximum number of Bluetooth-enabled nearby devices (as a proxy for physical distancing), step count, average heart rate, sleep duration, bedtime, phone unlock duration, and social app use duration. We performed Kruskal-Wallis tests followed by post hoc Dunn tests to assess differences in these features among baseline, prelockdown, and during lockdown periods. We also studied behavioral differences by age, gender, BMI, and educational background. RESULTS: We were able to quantify expected changes in time spent at home, distance travelled, and the number of nearby Bluetooth-enabled devices between prelockdown and during lockdown periods (P<.001 for all five countries). We saw reduced sociality as measured through mobility features and increased virtual sociality through phone use. People were more active on their phones (P<.001 for Italy, Spain, and the United Kingdom), spending more time using social media apps (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), particularly around major news events. Furthermore, participants had a lower heart rate (P<.001 for Italy and Spain; P=.02 for Denmark), went to bed later (P<.001 for Italy, Spain, the United Kingdom, and the Netherlands), and slept more (P<.001 for Italy, Spain, and the United Kingdom). We also found that young people had longer homestay than older people during the lockdown and fewer daily steps. Although there was no significant difference between the high and low BMI groups in time spent at home, the low BMI group walked more. CONCLUSIONS: RADAR-base, a freely deployable data collection platform leveraging data from wearables and mobile technologies, can be used to rapidly quantify and provide a holistic view of behavioral changes in response to public health interventions as a result of infectious outbreaks such as COVID-19. RADAR-base may be a viable approach to implementing an early warning system for passively assessing the local compliance to interventions in epidemics and pandemics, and could help countries ease out of lockdown.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Infecciones por Coronavirus/psicología , Recolección de Datos , Pandemias/prevención & control , Neumonía Viral/prevención & control , Neumonía Viral/psicología , Teléfono Inteligente , Aislamiento Social , Telemedicina , Dispositivos Electrónicos Vestibles , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Índice de Masa Corporal , COVID-19 , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/transmisión , Dinamarca/epidemiología , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Aplicaciones Móviles , Monitoreo Fisiológico , Países Bajos/epidemiología , Neumonía Viral/epidemiología , Neumonía Viral/transmisión , Medios de Comunicación Sociales , España/epidemiología , Reino Unido/epidemiología , Adulto Joven
7.
Front Med (Lausanne) ; 11: 1296890, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698783

RESUMEN

Interstitial lung diseases (ILDs) refer to a heterogeneous and complex group of conditions characterized by inflammation, fibrosis, or both, in the interstitium of the lungs. This results in impaired gas exchange, leading to a worsening of respiratory symptoms and a decline in lung function. While the etiology of some ILDs is unclear, most cases can be traced back to factors such as genetic predispositions, environmental exposures (including allergens, toxins, and air pollution), underlying autoimmune diseases, or the use of certain medications. There has been an increase in research and evidence aimed at identifying etiology, understanding epidemiology, improving clinical diagnosis, and developing both pharmacological and non-pharmacological treatments. This review provides a comprehensive overview of the current state of knowledge in the field of interstitial lung diseases.

8.
JMIR Ment Health ; 11: e51259, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39441952

RESUMEN

Background: The use of digital biomarkers through remote patient monitoring offers valuable and timely insights into a patient's condition, including aspects such as disease progression and treatment response. This serves as a complementary resource to traditional health care settings leveraging mobile technology to improve scale and lower latency, cost, and burden. Objective: Smartphones with embedded and connected sensors have immense potential for improving health care through various apps and mobile health (mHealth) platforms. This capability could enable the development of reliable digital biomarkers from long-term longitudinal data collected remotely from patients. Methods: We built an open-source platform, RADAR-base, to support large-scale data collection in remote monitoring studies. RADAR-base is a modern remote data collection platform built around Confluent's Apache Kafka to support scalability, extensibility, security, privacy, and quality of data. It provides support for study design and setup and active (eg, patient-reported outcome measures) and passive (eg, phone sensors, wearable devices, and Internet of Things) remote data collection capabilities with feature generation (eg, behavioral, environmental, and physiological markers). The back end enables secure data transmission and scalable solutions for data storage, management, and data access. Results: The platform has been used to successfully collect longitudinal data for various cohorts in a number of disease areas including multiple sclerosis, depression, epilepsy, attention-deficit/hyperactivity disorder, Alzheimer disease, autism, and lung diseases. Digital biomarkers developed through collected data are providing useful insights into different diseases. Conclusions: RADAR-base offers a contemporary, open-source solution driven by the community for remotely monitoring, collecting data, and digitally characterizing both physical and mental health conditions. Clinicians have the ability to enhance their insight through the use of digital biomarkers, enabling improved prevention, personalization, and early intervention in the context of disease management.


Asunto(s)
Teléfono Inteligente , Telemedicina , Humanos , Telemedicina/instrumentación , Fenotipo , Tecnología de Sensores Remotos/instrumentación , Tecnología de Sensores Remotos/métodos , Aplicaciones Móviles , Biomarcadores/análisis , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos
9.
Lancet Digit Health ; 6(9): e640-e650, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39138096

RESUMEN

BACKGROUND: The emergence of long COVID as a COVID-19 sequela was largely syndromic in characterisation. Digital health technologies such as wearable devices open the possibility to study this condition with passive, objective data in addition to self-reported symptoms. We aimed to quantify the prevalence and severity of symptoms across collected mobile health metrics over 12 weeks following COVID-19 diagnosis and to identify risk factors for the development of post-COVID-19 condition (also known as long COVID). METHODS: The Covid Collab study was a longitudinal, self-enrolled, community, case-control study. We recruited participants from the UK through a smartphone app, media publications, and promotion within the Fitbit app between Aug 28, 2020, and May 31, 2021. Adults (aged ≥18 years) who reported a COVID-19 diagnosis with a positive antigen or PCR test before Feb 1, 2022, were eligible for inclusion. We compared a cohort of 1200 patients who tested positive for COVID-19 with a cohort of 3600 sex-matched and age-matched controls without a COVID-19 diagnosis. Participants could provide information on COVID-19 symptoms and mental health through self-reported questionnaires (active data) and commercial wearable fitness devices (passive data). Data were compared between cohorts at three periods following diagnosis: acute COVID-19 (0-4 weeks), ongoing COVID-19 (4-12 weeks), and post-COVID-19 (12-16 weeks). We assessed sociodemographic and mobile health risk factors for the development of long COVID (defined as either a persistent change in a physiological signal or self-reported symptoms for ≥12 weeks after COVID-19 diagnosis). FINDINGS: By Aug 1, 2022, 17 667 participants had enrolled into the study, of whom 1200 (6·8%) cases and 3600 (20·4%) controls were included in the analyses. Compared with baseline (65 beats per min), resting heart rate increased significantly during the acute (0·47 beats per min; odds ratio [OR] 1·06 [95% CI 1·03-1·09]; p<0·0001), ongoing (0·99 beats per min; 1·11 [1·08-1·14]; p<0·0001), and post-COVID-19 (0·52 beats per min; 1·04 [1·02-1·07]; p=0·0017) phases. An increased level of historical activity in the period from 24 months to 6 months preceding COVID-19 diagnosis was protective against long COVID (coefficient -0·017 [95% CI -0·030 to -0·003]; p=0·015). Depressive symptoms were persistently elevated following COVID-19 (OR 1·03 [95% CI 1·01-1·06]; p=0·0033) and were a potential risk factor for developing long COVID (1·14 [1·07-1·22]; p<0·0001). INTERPRETATION: Mobile health technologies and commercial wearable devices might prove to be a useful resource for tracking recovery from COVID-19 and the prevalence of its long-term sequelae, as well as representing an abundant source of historical data. Mental wellbeing can be impacted negatively for an extended period following COVID-19. FUNDING: National Institute for Health and Care Research (NIHR), NIHR Maudsley Biomedical Research Centre, UK Research and Innovation, and Medical Research Council.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Teléfono Inteligente , Dispositivos Electrónicos Vestibles , Humanos , Masculino , Femenino , Estudios de Casos y Controles , Reino Unido/epidemiología , Factores de Riesgo , COVID-19/epidemiología , Persona de Mediana Edad , Adulto , Estudios Longitudinales , Anciano , SARS-CoV-2
10.
J Affect Disord ; 355: 40-49, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552911

RESUMEN

BACKGROUND: Prior research has associated spoken language use with depression, yet studies often involve small or non-clinical samples and face challenges in the manual transcription of speech. This paper aimed to automatically identify depression-related topics in speech recordings collected from clinical samples. METHODS: The data included 3919 English free-response speech recordings collected via smartphones from 265 participants with a depression history. We transcribed speech recordings via automatic speech recognition (Whisper tool, OpenAI) and identified principal topics from transcriptions using a deep learning topic model (BERTopic). To identify depression risk topics and understand the context, we compared participants' depression severity and behavioral (extracted from wearable devices) and linguistic (extracted from transcribed texts) characteristics across identified topics. RESULTS: From the 29 topics identified, we identified 6 risk topics for depression: 'No Expectations', 'Sleep', 'Mental Therapy', 'Haircut', 'Studying', and 'Coursework'. Participants mentioning depression risk topics exhibited higher sleep variability, later sleep onset, and fewer daily steps and used fewer words, more negative language, and fewer leisure-related words in their speech recordings. LIMITATIONS: Our findings were derived from a depressed cohort with a specific speech task, potentially limiting the generalizability to non-clinical populations or other speech tasks. Additionally, some topics had small sample sizes, necessitating further validation in larger datasets. CONCLUSION: This study demonstrates that specific speech topics can indicate depression severity. The employed data-driven workflow provides a practical approach for analyzing large-scale speech data collected from real-world settings.


Asunto(s)
Aprendizaje Profundo , Habla , Humanos , Teléfono Inteligente , Depresión/diagnóstico , Software de Reconocimiento del Habla
11.
JMIR Form Res ; 7: e51507, 2023 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-37999935

RESUMEN

BACKGROUND: Patients with chronic respiratory diseases and those in the postdischarge period following hospitalization because of COVID-19 are particularly vulnerable, and little is known about the changes in their symptoms and physiological parameters. Continuous remote monitoring of physiological parameters and symptom changes offers the potential for timely intervention, improved patient outcomes, and reduced health care costs. OBJECTIVE: This study investigated whether a real-time multimodal program using commercially available wearable technology, home-based Bluetooth-enabled spirometers, finger pulse oximeters, and smartphone apps is feasible and acceptable for patients with chronic respiratory diseases, as well as the value of low-burden, long-term passive data collection. METHODS: In a 3-arm prospective observational cohort feasibility study, we recruited 60 patients from the Royal Free Hospital and University College Hospital. These patients had been diagnosed with interstitial lung disease, chronic obstructive pulmonary disease, or post-COVID-19 condition (n=20 per group) and were followed for 180 days. This study used a comprehensive remote monitoring system designed to provide real-time and relevant data for both patients and clinicians. Data were collected using REDCap (Research Electronic Data Capture; Vanderbilt University) periodic surveys, Remote Assessment of Disease and Relapses-base active app questionnaires, wearables, finger pulse oximeters, smartphone apps, and Bluetooth home-based spirometry. The feasibility of remote monitoring was measured through adherence to the protocol, engagement during the follow-up period, retention rate, acceptability, and data integrity. RESULTS: Lowest-burden passive data collection methods, via wearables, demonstrated superior adherence, engagement, and retention compared with active data collection methods, with an average wearable use of 18.66 (SD 4.69) hours daily (77.8% of the day), 123.91 (SD 33.73) hours weekly (72.6% of the week), and 463.82 (SD 156.70) hours monthly (64.4% of the month). Highest-burden spirometry tasks and high-burden active app tasks had the lowest adherence, engagement, and retention, followed by low-burden questionnaires. Spirometry and active questionnaires had the lowest retention at 0.5 survival probability, indicating that they were the most burdensome. Adherence to and quality of home spirometry were analyzed; of the 7200 sessions requested, 4248 (59%) were performed. Of these, 90.3% (3836/4248) were of acceptable quality according to American Thoracic Society grading. Inclusion of protocol holidays improved retention measures. The technologies used were generally well received. CONCLUSIONS: Our findings provide evidence supporting the feasibility and acceptability of remote monitoring for capturing both subjective and objective data from various sources for respiratory diseases. The high engagement level observed with passively collected data suggests the potential of wearables for long-term, user-friendly remote monitoring in respiratory disease management. The unique piloting of certain features such as protocol holidays, alert notifications for missing data, and flexible support from the study team provides a reference for future studies in this field. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.2196/28873.

12.
JMIR Ment Health ; 10: e42866, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692937

RESUMEN

BACKGROUND: Remote measurement technologies (RMTs) such as smartphones and wearables can help improve treatment for depression by providing objective, continuous, and ecologically valid insights into mood and behavior. Engagement with RMTs is varied and highly context dependent; however, few studies have investigated their feasibility in the context of treatment. OBJECTIVE: A mixed methods design was used to evaluate engagement with active and passive data collection via RMT in people with depression undergoing psychotherapy. We evaluated the effects of treatment on 2 different types of engagement: study attrition (engagement with study protocol) and patterns of missing data (engagement with digital devices), which we termed data availability. Qualitative interviews were conducted to help interpret the differences in engagement. METHODS: A total of 66 people undergoing psychological therapy for depression were followed up for 7 months. Active data were gathered from weekly questionnaires and speech and cognitive tasks, and passive data were gathered from smartphone sensors and a Fitbit (Fitbit Inc) wearable device. RESULTS: The overall retention rate was 60%. Higher-intensity treatment (χ21=4.6; P=.03) and higher baseline anxiety (t56.28=-2.80, 2-tailed; P=.007) were associated with attrition, but depression severity was not (t50.4=-0.18; P=.86). A trend toward significance was found for the association between longer treatments and increased attrition (U=339.5; P=.05). Data availability was higher for active data than for passive data initially but declined at a sharper rate (90%-30% drop in 7 months). As for passive data, wearable data availability fell from a maximum of 80% to 45% at 7 months but showed higher overall data availability than smartphone-based data, which remained stable at the range of 20%-40% throughout. Missing data were more prevalent among GPS location data, followed by among Bluetooth data, then among accelerometry data. As for active data, speech and cognitive tasks had lower completion rates than clinical questionnaires. The participants in treatment provided less Fitbit data but more active data than those on the waiting list. CONCLUSIONS: Different data streams showed varied patterns of missing data, despite being gathered from the same device. Longer and more complex treatments and clinical characteristics such as higher baseline anxiety may reduce long-term engagement with RMTs, and different devices may show opposite patterns of missingness during treatment. This has implications for the scalability and uptake of RMTs in health care settings, the generalizability and accuracy of the data collected by these methods, feature construction, and the appropriateness of RMT use in the long term.

13.
J Atten Disord ; 27(9): 1040-1050, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37269091

RESUMEN

OBJECTIVE: We assessed the feasibility and validity of remote researcher-led administration and self-administration of modified versions of two cognitive tasks sensitive to ADHD, a four-choice reaction time task (Fast task) and a combined Continuous Performance Test/Go No-Go task (CPT/GNG), through a new remote measurement technology system. METHOD: We compared the cognitive performance measures (mean and variability of reaction times (MRT, RTV), omission errors (OE) and commission errors (CE)) at a remote baseline researcher-led administration and three remote self-administration sessions between participants with and without ADHD (n = 40). RESULTS: The most consistent group differences were found for RTV, MRT and CE at the baseline researcher-led administration and the first self-administration, with 8 of the 10 comparisons statistically significant and all comparisons indicating medium to large effect sizes. CONCLUSION: Remote administration of cognitive tasks successfully captured the difficulties with response inhibition and regulation of attention, supporting the feasibility and validity of remote assessments.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad , Humanos , Trastorno por Déficit de Atención con Hiperactividad/diagnóstico , Trastorno por Déficit de Atención con Hiperactividad/psicología , Proyectos Piloto , Tiempo de Reacción/fisiología , Atención/fisiología , Pruebas Neuropsicológicas , Cognición/fisiología
14.
BJPsych Bull ; 47(6): 328-336, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36545688

RESUMEN

EDIFY (Eating Disorders: Delineating Illness and Recovery Trajectories to Inform Personalised Prevention and Early Intervention in Young People) is an ambitious research project aiming to revolutionise how eating disorders are perceived, prevented and treated. Six integrated workstreams will address key questions, including: What are young people's experiences of eating disorders and recovery? What are the unique and shared risk factors in different groups? What helps or hinders recovery? How do the brain and behaviour change from early- to later-stage illness? How can we intervene earlier, quicker and in a more personalised way? This 4-year project, involving over 1000 participants, integrates arts, design and humanities with advanced neurobiological, psychosocial and bioinformatics approaches. Young people with lived experience of eating disorders are at the heart of EDIFY, serving as advisors and co-producers throughout. Ultimately, this work will expand public and professional perceptions of eating disorders, uplift under-represented voices and stimulate much-needed advances in policy and practice.

15.
J Affect Disord ; 341: 128-136, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37598722

RESUMEN

BACKGROUND: Speech contains neuromuscular, physiological and cognitive components, and so is a potential biomarker of mental disorders. Previous studies indicate that speaking rate and pausing are associated with major depressive disorder (MDD). However, results are inconclusive as many studies are small and underpowered and do not include clinical samples. These studies have also been unilingual and use speech collected in controlled settings. If speech markers are to help understand the onset and progress of MDD, we need to uncover markers that are robust to language and establish the strength of associations in real-world data. METHODS: We collected speech data in 585 participants with a history of MDD in the United Kingdom, Spain, and Netherlands as part of the RADAR-MDD study. Participants recorded their speech via smartphones every two weeks for 18 months. Linear mixed models were used to estimate the strength of specific markers of depression from a set of 28 speech features. RESULTS: Increased depressive symptoms were associated with speech rate, articulation rate and intensity of speech elicited from a scripted task. These features had consistently stronger effect sizes than pauses. LIMITATIONS: Our findings are derived at the cohort level so may have limited impact on identifying intra-individual speech changes associated with changes in symptom severity. The analysis of features averaged over the entire recording may have underestimated the importance of some features. CONCLUSIONS: Participants with more severe depressive symptoms spoke more slowly and quietly. Our findings are from a real-world, multilingual, clinical dataset so represent a step-change in the usefulness of speech as a digital phenotype of MDD.


Asunto(s)
Trastorno Depresivo Mayor , Habla , Humanos , Trastorno Depresivo Mayor/diagnóstico , Depresión , Lenguaje , Individualidad
16.
Front Physiol ; 14: 1145818, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37089424

RESUMEN

Objective: The aim of this study was to evaluate the association between changes in the autonomic control of cardiorespiratory system induced by walk tests and outcome measures in people with Multiple Sclerosis (pwMS). Methods: Electrocardiogram (ECG) recordings of 148 people with Relapsing-Remitting MS (RRMS) and 58 with Secondary Progressive MS (SPMS) were acquired using a wearable device before, during, and after walk test performance from a total of 386 periodical clinical visits. A subset of 90 participants repeated a walk test at home. Various MS-related symptoms, including fatigue, disability, and walking capacity were evaluated at each clinical visit, while heart rate variability (HRV) and ECG-derived respiration (EDR) were analyzed to assess autonomic nervous system (ANS) function. Statistical tests were conducted to assess differences in ANS control between pwMS grouped based on the phenotype or the severity of MS-related symptoms. Furthermore, correlation coefficients (r) were calculated to assess the association between the most significant ANS parameters and MS-outcome measures. Results: People with SPMS, compared to RRMS, reached higher mean heart rate (HRM) values during walk test, and larger sympathovagal balance after test performance. Furthermore, pwMS who were able to adjust their HRM and ventilatory values, such as respiratory rate and standard deviation of the ECG-derived respiration, were associated with better clinical outcomes. Correlation analyses showed weak associations between ANS parameters and clinical outcomes when the Multiple Sclerosis phenotype is not taken into account. Blunted autonomic response, in particular HRM reactivity, was related with worse walking capacity, yielding r = 0.36 r = 0.29 (RRMS) and r > 0.5 (SPMS). A positive strong correlation r > 0.7 r > 0.65 between cardiorespiratory parameters derived at hospital and at home was also found. Conclusion: Autonomic function, as measured by HRV, differs according to MS phenotype. Autonomic response to walk tests may be useful for assessing clinical outcomes, mainly in the progressive stage of MS. Participants with larger changes in HRM are able to walk longer distance, while reduced ventilatory function during and after walk test performance is associated with higher fatigue and disability severity scores. Monitoring of disorder severity could also be feasible using ECG-derived cardiac and respiratory parameters recorded with a wearable device at home.

17.
NPJ Digit Med ; 6(1): 25, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36806317

RESUMEN

Recent growth in digital technologies has enabled the recruitment and monitoring of large and diverse populations in remote health studies. However, the generalizability of inference drawn from remotely collected health data could be severely impacted by uneven participant engagement and attrition over the course of the study. We report findings on long-term participant retention and engagement patterns in a large multinational observational digital study for depression containing active (surveys) and passive sensor data collected via Android smartphones, and Fitbit devices from 614 participants for up to 2 years. Majority of participants (67.6%) continued to remain engaged in the study after 43 weeks. Unsupervised clustering of participants' study apps and Fitbit usage data showed 3 distinct engagement subgroups for each data stream. We found: (i) the least engaged group had the highest depression severity (4 PHQ8 points higher) across all data streams; (ii) the least engaged group (completed 4 bi-weekly surveys) took significantly longer to respond to survey notifications (3.8 h more) and were 5 years younger compared to the most engaged group (completed 20 bi-weekly surveys); and (iii) a considerable proportion (44.6%) of the participants who stopped completing surveys after 8 weeks continued to share passive Fitbit data for significantly longer (average 42 weeks). Additionally, multivariate survival models showed participants' age, ownership and brand of smartphones, and recruitment sites to be associated with retention in the study. Together these findings could inform the design of future digital health studies to enable equitable and balanced data collection from diverse populations.

18.
Lancet Digit Health ; 4(5): e370-e383, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35461692

RESUMEN

Containing the COVID-19 pandemic requires rapidly identifying infected individuals. Subtle changes in physiological parameters (such as heart rate, respiratory rate, and skin temperature), discernible by wearable devices, could act as early digital biomarkers of infections. Our primary objective was to assess the performance of statistical and algorithmic models using data from wearable devices to detect deviations compatible with a SARS-CoV-2 infection. We searched MEDLINE, Embase, Web of Science, the Cochrane Central Register of Controlled Trials (known as CENTRAL), International Clinical Trials Registry Platform, and ClinicalTrials.gov on July 27, 2021 for publications, preprints, and study protocols describing the use of wearable devices to identify a SARS-CoV-2 infection. Of 3196 records identified and screened, 12 articles and 12 study protocols were analysed. Most included articles had a moderate risk of bias, as per the National Institute of Health Quality Assessment Tool for Observational and Cross-Sectional Studies. The accuracy of algorithmic models to detect SARS-CoV-2 infection varied greatly (area under the curve 0·52-0·92). An algorithm's ability to detect presymptomatic infection varied greatly (from 20% to 88% of cases), from 14 days to 1 day before symptom onset. Increased heart rate was most frequently associated with SARS-CoV-2 infection, along with increased skin temperature and respiratory rate. All 12 protocols described prospective studies that had yet to be completed or to publish their results, including two randomised controlled trials. The evidence surrounding wearable devices in the early detection of SARS-CoV-2 infection is still in an early stage, with a limited overall number of studies identified. However, these studies show promise for the early detection of SARS-CoV-2 infection. Large prospective, and preferably controlled, studies recruiting and retaining larger and more diverse populations are needed to provide further evidence.


Asunto(s)
COVID-19 , Dispositivos Electrónicos Vestibles , COVID-19/diagnóstico , Estudios Transversales , Humanos , Pandemias , Estudios Prospectivos , SARS-CoV-2
19.
JMIR Mhealth Uhealth ; 10(1): e28095, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35089148

RESUMEN

BACKGROUND: Most smartphones and wearables are currently equipped with location sensing (using GPS and mobile network information), which enables continuous location tracking of their users. Several studies have reported that various mobility metrics, as well as home stay, that is, the amount of time an individual spends at home in a day, are associated with symptom severity in people with major depressive disorder (MDD). Owing to the use of small and homogeneous cohorts of participants, it is uncertain whether the findings reported in those studies generalize to a broader population of individuals with MDD symptoms. OBJECTIVE: The objective of this study is to examine the relationship between the overall severity of depressive symptoms, as assessed by the 8-item Patient Health Questionnaire, and median daily home stay over the 2 weeks preceding the completion of a questionnaire in individuals with MDD. METHODS: We used questionnaire and geolocation data of 164 participants with MDD collected in the observational Remote Assessment of Disease and Relapse-Major Depressive Disorder study. The participants were recruited from three study sites: King's College London in the United Kingdom (109/164, 66.5%); Vrije Universiteit Medisch Centrum in Amsterdam, the Netherlands (17/164, 10.4%); and Centro de Investigación Biomédica en Red in Barcelona, Spain (38/164, 23.2%). We used a linear regression model and a resampling technique (n=100 draws) to investigate the relationship between home stay and the overall severity of MDD symptoms. Participant age at enrollment, gender, occupational status, and geolocation data quality metrics were included in the model as additional explanatory variables. The 95% 2-sided CIs were used to evaluate the significance of model variables. RESULTS: Participant age and severity of MDD symptoms were found to be significantly related to home stay, with older (95% CI 0.161-0.325) and more severely affected individuals (95% CI 0.015-0.184) spending more time at home. The association between home stay and symptoms severity appeared to be stronger on weekdays (95% CI 0.023-0.178, median 0.098; home stay: 25th-75th percentiles 17.8-22.8, median 20.9 hours a day) than on weekends (95% CI -0.079 to 0.149, median 0.052; home stay: 25th-75th percentiles 19.7-23.5, median 22.3 hours a day). Furthermore, we found a significant modulation of home stay by occupational status, with employment reducing home stay (employed participants: 25th-75th percentiles 16.1-22.1, median 19.7 hours a day; unemployed participants: 25th-75th percentiles 20.4-23.5, median 22.6 hours a day). CONCLUSIONS: Our findings suggest that home stay is associated with symptom severity in MDD and demonstrate the importance of accounting for confounding factors in future studies. In addition, they illustrate that passive sensing of individuals with depression is feasible and could provide clinically relevant information to monitor the course of illness in patients with MDD.


Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Mayor/diagnóstico , Trastorno Depresivo Mayor/epidemiología , Humanos , Recurrencia , Teléfono Inteligente , Encuestas y Cuestionarios , Reino Unido
20.
Comput Methods Programs Biomed ; 227: 107204, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36371974

RESUMEN

BACKGROUND AND OBJECTIVES: Multiple sclerosis (MS) is a progressive inflammatory and neurodegenerative disease of the central nervous system affecting over 2.5 million people globally. In-clinic six-minute walk test (6MWT) is a widely used objective measure to evaluate the progression of MS. Yet, it has limitations such as the need for a clinical visit and a proper walkway. The widespread use of wearable devices capable of depicting patients' activity profiles has the potential to assess the level of MS-induced disability in free-living conditions. METHODS: In this work, we extracted 96 features in different temporal granularities (from minute-level to day-level) from wearable data and explored their utility in estimating 6MWT scores in a European (Italy, Spain, and Denmark) MS cohort of 337 participants over an average of 10 months' duration. We combined these features with participants' demographics using three regression models including elastic net, gradient boosted trees and random forest. In addition, we quantified the individual feature's contribution using feature importance in these regression models, linear mixed-effects models, generalized estimating equations, and correlation-based feature selection (CFS). RESULTS: The results showed promising estimation performance with R2 of 0.30, which was derived using random forest after CFS. This model was able to distinguish the participants with low disability from those with high disability. Furthermore, we observed that the minute-level (≤ 8 minutes) step count, particularly those capturing the upper end of the step count distribution, had a stronger association with 6MWT. The use of a walking aid was indicative of ambulatory function measured through 6MWT. CONCLUSIONS: This study demonstrates the utility of wearables devices in assessing ambulatory impairments in people with MS in free-living conditions and provides a basis for future investigation into the clinical relevance.


Asunto(s)
Esclerosis Múltiple , Enfermedades Neurodegenerativas , Dispositivos Electrónicos Vestibles , Humanos , Esclerosis Múltiple/diagnóstico , Condiciones Sociales , Caminata/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA