Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Biol ; 21(8): e3002263, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37647291

RESUMEN

The target of rapamycin (TOR) signalling pathway plays a key role in the coordination between cellular growth and the cell cycle machinery in eukaryotes. The underlying molecular mechanisms by which TOR might regulate events after anaphase remain unknown. We show for the first time that one of the 2 TOR complexes in budding yeast, TORC1, blocks the separation of cells following cytokinesis by phosphorylation of a member of the NDR (nuclear Dbf2-related) protein-kinase family, the protein Cbk1. We observe that TORC1 alters the phosphorylation pattern of Cbk1 and we identify a residue within Cbk1 activation loop, T574, for which a phosphomimetic substitution makes Cbk1 catalytically inactive and, indeed, reproduces TORC1 control over cell separation. In addition, we identify the exocyst component Sec3 as a key substrate of Cbk1, since Sec3 activates the SNARE complex to promote membrane fusion. TORC1 activity ultimately compromises the interaction between Sec3 and a t-SNARE component. Our data indicate that TORC1 negatively regulates cell separation in budding yeast by participating in Cbk1 phosphorylation, which in turn controls the fusion of secretory vesicles transporting hydrolase at the site of division.


Asunto(s)
Saccharomycetales , Fosforilación , Anafase , Separación Celular , Diana Mecanicista del Complejo 1 de la Rapamicina
2.
Cell Mol Life Sci ; 79(3): 165, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35230542

RESUMEN

Eukaryotic cells divide and separate all their components after chromosome segregation by a process called cytokinesis to complete cell division. Cytokinesis is highly regulated by the recruitment of the components to the division site and through post-translational modifications such as phosphorylations. The budding yeast mitotic kinases Cdc28-Clb2, Cdc5, and Dbf2-Mob1 phosphorylate several cytokinetic proteins contributing to the regulation of cytokinesis. The PP2A-Cdc55 phosphatase regulates mitosis counteracting Cdk1- and Cdc5-dependent phosphorylation. This prompted us to propose that PP2A-Cdc55 could also be counteracting the mitotic kinases during cytokinesis. Here we show that in the absence of Cdc55, AMR contraction and the primary septum formation occur asymmetrically to one side of the bud neck supporting a role for PP2A-Cdc55 in cytokinesis regulation. In addition, by in vivo and in vitro assays, we show that PP2A-Cdc55 dephosphorylates the chitin synthase II (Chs2 in budding yeast) a component of the Ingression Progression Complexes (IPCs) involved in cytokinesis. Interestingly, the non-phosphorylable version of Chs2 rescues the asymmetric AMR contraction and the defective septa formation observed in cdc55∆ mutant cells. Therefore, timely dephosphorylation of the Chs2 by PP2A-Cdc55 is crucial for proper actomyosin ring contraction. These findings reveal a new mechanism of cytokinesis regulation by the PP2A-Cdc55 phosphatase and extend our knowledge of the involvement of multiple phosphatases during cytokinesis.


Asunto(s)
Actomiosina/metabolismo , Citocinesis/fisiología , Quitina Sintasa/metabolismo , Segregación Cromosómica/fisiología , Fosforilación/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
3.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37958727

RESUMEN

The highly conserved TOR signaling pathway is crucial for coordinating cellular growth with the cell cycle machinery in eukaryotes. One of the two TOR complexes in budding yeast, TORC1, integrates environmental cues and promotes cell growth. While cells grow, they need to copy their chromosomes, segregate them in mitosis, divide all their components during cytokinesis, and finally physically separate mother and daughter cells to start a new cell cycle apart from each other. To maintain cell size homeostasis and chromosome stability, it is crucial that mechanisms that control growth are connected and coordinated with the cell cycle. Successive periods of high and low TORC1 activity would participate in the adequate cell cycle progression. Here, we review the known molecular mechanisms through which TORC1 regulates the cell cycle in the budding yeast Saccharomyces cerevisiae that have been extensively used as a model organism to understand the role of its mammalian ortholog, mTORC1.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Transducción de Señal , Animales , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Nutrientes , Ciclo Celular/genética , Mamíferos/metabolismo
4.
PLoS Genet ; 14(3): e1007299, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29601579

RESUMEN

Deposition of additional plasma membrane and cargoes during cytokinesis in eukaryotic cells must be coordinated with actomyosin ring contraction, plasma membrane ingression and extracellular matrix remodelling. The process by which the secretory pathway promotes specific incorporation of key factors into the cytokinetic machinery is poorly understood. Here, we show that cell polarity protein Spa2 interacts with actomyosin ring components during cytokinesis. Spa2 directly binds to cytokinetic factors Cyk3 and Hof1. The lethal effects of deleting the SPA2 gene in the absence of either Cyk3 or Hof1 can be suppressed by expression of the hypermorphic allele of the essential chitin synthase II (Chs2), a transmembrane protein transported on secretory vesicles that makes the primary septum during cytokinesis. Spa2 also interacts directly with the chitin synthase Chs2. Interestingly, artificial incorporation of Chs2 into the cytokinetic machinery allows the localisation of Spa2 at the site of division. In addition, increased Spa2 protein levels promote Chs2 incorporation at the site of division and primary septum formation. Our data indicate that Spa2 is recruited to the cleavage site to co-operate with the secretory vesicle system and particular actomyosin ring components to promote the incorporation of Chs2 into the so-called 'ingression progression complexes' during cytokinesis in budding yeast.


Asunto(s)
Polaridad Celular , Quitina Sintasa/metabolismo , Citocinesis , Proteínas del Citoesqueleto/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología
5.
PLoS Genet ; 12(2): e1005864, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26891268

RESUMEN

Eukaryotic cells must coordinate contraction of the actomyosin ring at the division site together with ingression of the plasma membrane and remodelling of the extracellular matrix (ECM) to support cytokinesis, but the underlying mechanisms are still poorly understood. In eukaryotes, glycosyltransferases that synthesise ECM polysaccharides are emerging as key factors during cytokinesis. The budding yeast chitin synthase Chs2 makes the primary septum, a special layer of the ECM, which is an essential process during cell division. Here we isolated a group of actomyosin ring components that form complexes together with Chs2 at the cleavage site at the end of the cell cycle, which we named 'ingression progression complexes' (IPCs). In addition to type II myosin, the IQGAP protein Iqg1 and Chs2, IPCs contain the F-BAR protein Hof1, and the cytokinesis regulators Inn1 and Cyk3. We describe the molecular mechanism by which chitin synthase is activated by direct association of the C2 domain of Inn1, and the transglutaminase-like domain of Cyk3, with the catalytic domain of Chs2. We used an experimental system to find a previously unanticipated role for the C-terminus of Inn1 in preventing the untimely activation of Chs2 at the cleavage site until Cyk3 releases the block on Chs2 activity during late mitosis. These findings support a model for the co-ordinated regulation of cell division in budding yeast, in which IPCs play a central role.


Asunto(s)
Citocinesis , Matriz Extracelular/metabolismo , Saccharomycetales/citología , Saccharomycetales/metabolismo , Actomiosina/metabolismo , Biocatálisis , Dominio Catalítico , División Celular , Quitina/biosíntesis , Modelos Biológicos , Unión Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Cell Sci ; 125(Pt 22): 5453-66, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22956544

RESUMEN

The chitin synthase that makes the primary septum during cell division in budding yeasts is an important therapeutic target with an unknown activation mechanism. We previously found that the C2-domain of the Saccharomyces cerevisiae Inn1 protein plays an essential but uncharacterised role at the cleavage site during cytokinesis. By combining a novel degron allele of INN1 with a point mutation in the C2-domain, we screened for mutations in other genes that suppress the resulting defect in cell division. In this way, we identified 22 dominant mutations of CHS2 (chitin synthase II) that map to two neighbouring sites in the catalytic domain. Chs2 in isolated cell membranes is normally nearly inactive (unless protease treatment is used to bypass inhibition); however, the dominant suppressor allele Chs2-V377I has enhanced activity in vitro. We show that Inn1 associates with Chs2 in yeast cell extracts. It also interacts in a yeast two-hybrid assay with the N-terminal 65% of Chs2, which contains the catalytic domain. In addition to compensating for mutations in the Inn1 C2-domain, the dominant CHS2 alleles suppress cytokinesis defects produced by the lack of the Cyk3 protein. Our data support a model in which the C2-domain of Inn1 acts in conjunction with Cyk3 to regulate the catalytic domain of Chs2 during cytokinesis. These findings suggest novel approaches for developing future drugs against important fungal pathogens.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quitina Sintasa/metabolismo , Citocinesis , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Alelos , Secuencia de Aminoácidos , Biocatálisis , Proliferación Celular , Quitina Sintasa/química , Genes Dominantes/genética , Genes Fúngicos/genética , Genes Supresores , Datos de Secuencia Molecular , Proteínas Mutantes/metabolismo , Mutación/genética , Unión Proteica/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas de Saccharomyces cerevisiae/química , Supresión Genética
7.
EMBO J ; 28(19): 2992-3004, 2009 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-19661920

RESUMEN

The eukaryotic replisome is a crucial determinant of genome stability, but its structure is still poorly understood. We found previously that many regulatory proteins assemble around the MCM2-7 helicase at yeast replication forks to form the replisome progression complex (RPC), which might link MCM2-7 to other replisome components. Here, we show that the RPC associates with DNA polymerase alpha that primes each Okazaki fragment during lagging strand synthesis. Our data indicate that a complex of the GINS and Ctf4 components of the RPC is crucial to couple MCM2-7 to DNA polymerase alpha. Others have found recently that the Mrc1 subunit of RPCs binds DNA polymerase epsilon, which synthesises the leading strand at DNA replication forks. We show that cells lacking both Ctf4 and Mrc1 experience chronic activation of the DNA damage checkpoint during chromosome replication and do not complete the cell cycle. These findings indicate that coupling MCM2-7 to replicative polymerases is an important feature of the regulation of chromosome replication in eukaryotes, and highlight a key role for Ctf4 in this process.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Polimerasa I/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas Cromosómicas no Histona , ADN/metabolismo , Componente 7 del Complejo de Mantenimiento de Minicromosoma , Unión Proteica , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética
8.
Methods Mol Biol ; 1505: 245-262, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27826869

RESUMEN

In budding yeast cells, cytokinesis is achieved by the successful division of the cytoplasm into two daughter cells, but the precise mechanisms of cell division and its regulation are still rather poorly understood. The Mitotic Exit Network (MEN) is the signaling cascade that is responsible for the release of Cdc14 phosphatase leading to the inactivation of the kinase activity associated to cyclin-dependent kinases (CDK), which drives exit from mitosis and a rapid and efficient cytokinesis. Mitotic CDK impairs the activation of MEN before anaphase, and activation of MEN in anaphase leads to the inactivation of CDK, which presents a challenge to determine the contribution that each pathway makes to the successful onset of cytokinesis. To determine CDK and MEN contribution to cytokinesis irrespectively of each other, here we present methods to induce cytokinesis after the inactivation of CDK activity in temperature sensitive mutants of the MEN pathway. An array of methods to monitor the cellular events associated with the successful cytokinesis is included.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Citocinesis , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Anafase , Mitosis , Saccharomyces cerevisiae/metabolismo , Transducción de Señal
9.
Methods Mol Biol ; 1369: 239-56, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26519317

RESUMEN

Understanding protein-protein interactions and the architecture of protein complexes in which they work is essential to identify their biological role. Protein co-immunoprecipitation (co-IP) is an invaluable technique used in biochemistry allowing the identification of protein interactors. Here, we describe in detail an immunoaffinity purification protocol as a one-step or two-step immunoprecipitation from budding yeast Saccharomyces cerevisiae cells to subsequently detect interactions between proteins involved in the same biological process.


Asunto(s)
Proteínas Fúngicas/metabolismo , Inmunoprecipitación/métodos , Mapeo de Interacción de Proteínas/métodos , Saccharomycetales/metabolismo , Unión Proteica
10.
Methods Mol Biol ; 1369: 279-91, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26519319

RESUMEN

A number of model organisms have provided the basis for our understanding of the eukaryotic cell cycle. These model organisms are generally much easier to manipulate than mammalian cells and as such provide amenable tools for extensive genetic and biochemical analysis. One of the most common model organisms used to study the cell cycle is the budding yeast Saccharomyces cerevisiae. This model provides the ability to synchronise cells efficiently at different stages of the cell cycle, which in turn opens up the possibility for extensive and detailed study of mechanisms regulating the eukaryotic cell cycle. Here, we describe methods in which budding yeast cells are arrested at a particular phase of the cell cycle and then released from the block, permitting the study of molecular mechanisms that drive the progression through the cell cycle.


Asunto(s)
Ciclo Celular , Saccharomyces cerevisiae/fisiología , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/metabolismo , Citometría de Flujo , Proteínas de Unión al GTP/metabolismo , Hidroxiurea/farmacología , Factor de Apareamiento , Nocodazol/farmacología , Péptidos/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos
11.
Cell Rep ; 3(3): 892-904, 2013 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-23499444

RESUMEN

DNA unwinding at eukaryotic replication forks displaces parental histones, which must be redeposited onto nascent DNA in order to preserve chromatin structure. By screening systematically for replisome components that pick up histones released from chromatin into a yeast cell extract, we found that the Mcm2 helicase subunit binds histones cooperatively with the FACT (facilitiates chromatin transcription) complex, which helps to re-establish chromatin during transcription. FACT does not associate with the Mcm2-7 helicase at replication origins during G1 phase but is subsequently incorporated into the replisome progression complex independently of histone binding and uniquely among histone chaperones. The amino terminal tail of Mcm2 binds histones via a conserved motif that is dispensable for DNA synthesis per se but helps preserve subtelomeric chromatin, retain the 2 micron minichromosome, and support growth in the absence of Ctf18-RFC. Our data indicate that the eukaryotic replication and transcription machineries use analogous assemblies of multiple chaperones to preserve chromatin integrity.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Histonas/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Cromatina/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Fase G1 , Proteínas del Grupo de Alta Movilidad/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Chaperonas de Histonas/metabolismo , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Origen de Réplica , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Factores de Elongación Transcripcional/genética , Factores de Elongación Transcripcional/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA