Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Appl Physiol (1985) ; 136(4): 928-937, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38420682

RESUMEN

Abdominal inflation with CO2 is used to facilitate laparoscopic surgeries, however, providing adequate mechanical ventilation in this scenario is of major importance during anesthesia management. We characterized high-frequency percussive ventilation (HFPV) in protecting from the gas exchange and respiratory mechanical impairments during capnoperitoneum. In addition, we aimed to assess the difference between conventional pressure-controlled mechanical ventilation (CMV) and HFPV modalities generating the high-frequency signal intratracheally (HFPVi) or extrathoracally (HFPVe). Anesthetized rabbits (n = 16) were mechanically ventilated by random sequences of CMV, HFPVi, and HFPVe. The ventilator superimposed the conventional waveform with two high-frequency signals (5 Hz and 10 Hz) during intratracheal HFPV (HFPVi) and HFPV with extrathoracic application of oscillatory signals through a sealed chest cuirass (HFPVe). Lung oxygenation index ([Formula: see text]/[Formula: see text]), arterial partial pressure of carbon dioxide ([Formula: see text]), intrapulmonary shunt (Qs/Qt), and respiratory mechanics were assessed before abdominal inflation, during capnoperitoneum, and after abdominal deflation. Compared with CMV, HFPVi with additional 5-Hz oscillations during capnoperitoneum resulted in higher [Formula: see text]/[Formula: see text], lower [Formula: see text], and decreased Qs/Qt. These improvements were smaller but remained significant during HFPVi with 10 Hz and HFPVe with either 5 or 10 Hz. The ventilation modes did not protect against capnoperitoneum-induced deteriorations in respiratory tissue mechanics. These findings suggest that high-frequency oscillations combined with conventional pressure-controlled ventilation improved lung oxygenation and CO2 removal in a model of capnoperitoneum. Compared with extrathoracic pressure oscillations, intratracheal generation of oscillatory pressure bursts appeared more effective. These findings may contribute to the optimization of mechanical ventilation during laparoscopic surgery.NEW & NOTEWORTHY The present study examines an alternative and innovative mechanical ventilation modality in improving oxygen delivery, CO2 clearance, and respiratory mechanical abnormalities in a clinically relevant experimental model of capnoperitoneum. Our data reveal that high-frequency oscillations combined with conventional ventilation improve gas exchange, with intratracheal oscillations being more effective than extrathoracic oscillations in this clinically relevant translational model.


Asunto(s)
Infecciones por Citomegalovirus , Ventilación de Alta Frecuencia , Insuficiencia Respiratoria , Animales , Conejos , Dióxido de Carbono , Ventilación de Alta Frecuencia/métodos , Respiración Artificial/métodos , Pulmón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA