Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 141(19): 7990-7999, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31021093

RESUMEN

The water gas shift (WGS) reaction is of paramount importance for the chemical industry, as it constitutes, coupled with methane reforming, the main industrial route to produce hydrogen. Copper-chromium-iron oxide-based catalysts have been widely used for the high-temperature WGS reaction industrially. The WGS reaction mechanism by the CuCrFeO x catalyst has been debated for years, mainly between a "redox" mechanism involving the participation of atomic oxygen from the catalyst and an "associative" mechanism proceeding via a surface formate-like intermediate. In the present work, advanced in situ characterization techniques (infrared spectroscopy, temperature-programmed surface reaction (TPSR), near-ambient pressure XPS (NAP-XPS), and inelastic neutron scattering (INS)) were applied to determine the nature of the catalyst surface and identify surface intermediate species under WGS reaction conditions. The surface of the CuCrFeO x catalyst is found to be dynamic and becomes partially reduced under WGS reaction conditions, forming metallic Cu nanoparticles on Fe3O4. Neither in situ IR not INS spectroscopy detect the presence of surface formate species during WGS. TPSR experiments demonstrate that the evolution of CO2 and H2 from the CO/H2O reactants follows different kinetics than the evolution of CO2 and H2 from HCOOH decomposition (molecule mimicking the associative mechanism). Steady-state isotopic transient kinetic analysis (SSITKA) (CO + H216O → CO + H218O) exhibited significant 16O/18O scrambling, characteristic of a redox mechanism. Computed activation energies for elementary steps for the redox and associative mechanism by density functional theory (DFT) simulations indicate that the redox mechanism is favored over the associative mechanism. The combined spectroscopic, computational, and kinetic evidence in the present study finally resolves the WGS reaction mechanism on the industrial-type high-temperature CuCrFeO x catalyst that is shown to proceed via the redox mechanism.

2.
J Am Chem Soc ; 139(28): 9721-9727, 2017 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-28654298

RESUMEN

Ceria has recently shown intriguing hydrogenation reactivity in catalyzing alkyne selectively to alkenes. However, the mechanism of the hydrogenation reaction, especially the activation of H2, remains experimentally elusive. In this work, we report the first direct spectroscopy evidence for the presence of both surface and bulk Ce-H species upon H2 dissociation over ceria via in situ inelastic neutron scattering spectroscopy. Combined with in situ ambient-pressure X-ray photoelectron spectroscopy, IR, and Raman spectroscopic studies, the results together point to a heterolytic dissociation mechanism of H2 over ceria, leading to either homolytic products (surface OHs) on a close-to-stoichiometric ceria surface or heterolytic products (Ce-H and OH) with the presence of induced oxygen vacancies in ceria. The finding of this work has significant implications for understanding catalysis by ceria in both hydrogenation and redox reactions where hydrogen is involved.

3.
Angew Chem Int Ed Engl ; 56(33): 9820-9824, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28636790

RESUMEN

Although perovskites have been widely used in catalysis, tuning of their surface termination to control reaction selectivity has not been well established. In this study, we employed multiple surface-sensitive techniques to characterize the surface termination (one aspect of surface reconstruction) of SrTiO3 (STO) after thermal pretreatment (Sr enrichment) and chemical etching (Ti enrichment). We show, by using the conversion of 2-propanol as a probe reaction, that the surface termination of STO can be controlled to greatly tune catalytic acid/base properties and consequently the reaction selectivity over a wide range, which is not possible with single-metal oxides, either SrO or TiO2 . Density functional theory (DFT) calculations explain well the selectivity tuning and reaction mechanism on STO with different surface termination. Similar catalytic tunability was also observed on BaZrO3 , thus highlighting the generality of the findings of this study.

4.
J Am Chem Soc ; 136(38): 13170-3, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25215519

RESUMEN

The measurement of isosteric heats of adsorption of silica supported amine materials in the low pressure range (0-0.1 bar) is critical for understanding the interactions between CO2 and amine sites at low coverage and hence to the development of efficient amine adsorbents for CO2 capture from flue gas and ambient air. Heats of adsorption for an array of silica-supported amine materials are experimentally measured at low coverage using a Calvet calorimeter equipped with a customized dosing manifold. In a series of 3-aminopropyl-functionalized silica materials, higher amine densities resulted in higher isosteric heats of adsorption, clearly showing that the density/proximity of amine sites can influence the amine efficiency of adsorbents. In a series of materials with fixed amine loading but different amine types, strongly basic primary and secondary amine materials are shown to have essentially identical heats of adsorption near 90 kJ/mol. However, the adsorption uptakes vary substantially as a function of CO2 partial pressure for different primary and secondary amines, demonstrating that entropic contributions to adsorption may play a key role in adsorption at secondary amine sites, making adsorption at these sites less efficient at the low coverages that are important to the direct capture of CO2 from ambient air. Thus, while primary amines are confirmed to be the most effective amine types for CO2 capture from ambient air, this is not due to enhanced enthalpic contributions associated with primary amines over secondary amines, but may be due to unfavorable entropic factors associated with organization of the second alkyl chain on the secondary amine during CO2 adsorption. Given this hypothesis, favorable entropic factors may be the main reason primary amine based adsorbents are more effective under air capture conditions.

5.
Nanoscale ; 11(40): 18568-18574, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31287484

RESUMEN

CO oxidation is an important reaction both experimentally and industrially, and its performance is usually dominated by the charge states of catalysts. For example, CO oxidation on the platinum (Pt) surface requires a properly charged state for the balance of adsorption and activation of CO and O2. Here, we present "Mott-Schottky modulated catalysis" on Pt nanoparticles (NPs) via an electron-donating carbon nitride (CN) support with a tunable Fermi level. We demonstrate that properly-charged Pt presents an excellent catalytic CO oxidation activity with an initial conversion temperature as low as 25 °C and total CO conversion below 85 °C. The tunable electronic structure of Pt NPs, which is regulated by the Fermi level of CN, is a key factor in dominating the catalytic performance. This "Mott-Schottky modulated catalysis" concept may be extended to maneuver the charge state on other metal catalysts for targeted catalytic reactions.

6.
ChemSusChem ; 10(1): 266-276, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27573047

RESUMEN

The nature of the surface species formed through the adsorption of CO2 on amine-grafted mesoporous silica is investigated through in situ FTIR spectroscopy with the aid of 15 N dynamic nuclear polarization (DNP) and 13 C NMR spectroscopy. Primary, secondary, and tertiary amines are functionalized onto a mesoporous SBA-15 silica. Both isotopically labeled 13 CO2 and natural-abundance CO2 are used for accurate FTIR peak assignments, which are compared with assignments reported previously. The results support the formation of monomeric and dimeric carbamic acid species on secondary amines that are stabilized differently to the monocarbamic acid species on primary amines. Furthermore, the results from isotopically labelled 13 CO2 experiments suggest the existence of two carbamate species on primary amines, whereas only one species is observed predominantly on secondary amines. The analysis of the IR peak intensities and frequencies indicate that the second carbamate species on primary amines is probably more asymmetric in nature and forms in a relatively smaller amount. Only the formation of bicarbonate ions at a low concentration is observed on tertiary amines; therefore, physisorbed water on the surface plays a role in the hydrolysis of CO2 even if water is not added intentionally and dry gases are used. This suggests that a small amount of bicarbonate ions could be expected to form on primary and secondary amines, which are more hydrophilic than tertiary amines, and these low concentration species are difficult to observe on such samples.


Asunto(s)
Aminas/química , Dióxido de Carbono/química , Dióxido de Silicio/química , Espectroscopía Infrarroja por Transformada de Fourier , Adsorción , Propiedades de Superficie
7.
Nat Commun ; 8: 15291, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28598418

RESUMEN

Taming interfacial electronic effects on Pt nanoparticles modulated by their concomitants has emerged as an intriguing approach to optimize Pt catalytic performance. Here, we report Pt nanoparticles assembled on vacancy-abundant hexagonal boron nitride nanosheets and their use as a model catalyst to embrace an interfacial electronic effect on Pt induced by the nanosheets with N-vacancies and B-vacancies for superior CO oxidation catalysis. Experimental results indicate that strong interaction exists between Pt and the vacancies. Bader charge analysis shows that with Pt on B-vacancies, the nanosheets serve as a Lewis acid to accept electrons from Pt, and on the contrary, when Pt sits on N-vacancies, the nanosheets act as a Lewis base for donating electrons to Pt. The overall-electronic effect demonstrates an electron-rich feature of Pt after assembling on hexagonal boron nitride nanosheets. Such an interfacial electronic effect makes Pt favour the adsorption of O2, alleviating CO poisoning and promoting the catalysis.

8.
ChemSusChem ; 8(3): 534-43, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25504913

RESUMEN

The chemical oxidation of activated carbon by H2 O2 and H2 SO4 is investigated, structural and chemical modifications are characterized, and the materials are used as catalysts for the hydrolysis of cellulose. Treatment with H2 O2 enlarges the pore size and imparts functional groups such as phenols, lactones, and carboxylic acids. H2 SO4 treatment targets the edges of carbon sheets primarily, and this effect is more pronounced with a higher temperature. Adsorption isotherms demonstrate that the adsorption of oligomers on functionalized carbon is dominated by van der Waals forces. The materials treated chemically are active for the hydrolysis of cellulose despite the relative weakness of most of their acid sites. It is proposed that a synergistic effect between defect sites and functional groups enhances the activity by inducing a conformational change in the glucan chains if they are adsorbed at defect sites. This activates the glycosidic bonds for hydrolysis by in-plane functional groups.


Asunto(s)
Celulosa/química , Carbón Orgánico/química , Adsorción , Peróxido de Hidrógeno/química , Hidrólisis , Ácidos Sulfúricos/química , Temperatura
9.
J Phys Chem Lett ; 6(5): 812-6, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-26262657

RESUMEN

Flexible framework dynamics present in the subset of metal-organic frameworks known as soft porous crystals give rise to interesting structural properties that are unique to this class of materials. In this work, we use experiments and molecular simulation to understand the highly dynamic nanorotor behavior of the 1,4-diazabicyclo[2.2.2]octane (DABCO) ligand in the pillared Zn-DMOF and Zn-DMOF-TM (TM = tetramethyl) structures. While DABCO is known to be displaced in the presence of water in the parent Zn-DMOF structure, the Zn-DMOF-TM variation is highly stable even after adsorbing significant amounts of water vapor. The dynamics of DABCO in the presence of water guest molecules is therefore also explored in the Zn-DMOF-TM structure via in situ NMR and IR experiments. This analysis shows that the rotational motion of the DABCO linkers is dependent on water content, but not a likely source of water instability because the dynamics are fast and largely unaffected by the presence of methyl functional groups.

10.
J Phys Chem Lett ; 5(23): 4194-200, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-26278953

RESUMEN

Three primary amine materials functionalized onto mesoporous silica with low, medium, and high surface amine coverages are prepared and evaluated for binary CO2/H2O adsorption under dilute conditions. Enhancement of amine efficiency due to humid adsorption is most pronounced for low surface amine coverage materials. In situ FT-IR spectra of adsorbed CO2 on these materials suggest this enhancement may be associated with the formation of bicarbonate species during adsorption on materials with low surface amine coverage, though such species are not observed on high surface coverage materials. On the materials with the lowest amine loading, bicarbonate is observed on longer time scales of adsorption, but only after spectral contributions from rapidly forming alkylammonium carbamate species are removed. This is the first time that direct evidence for bicarbonate formation, which is known to occur in liquid aqueous amine solutions, has been presented for CO2 adsorption on solid amine adsorbents.

11.
ChemSusChem ; 7(11): 3145-56, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25179814

RESUMEN

Solid oxide-supported amine sorbents for CO2 capture are amongst the most rapidly developing classes of sorbent materials for CO2 capture. Herein, basic γ supports are used as hosts for amine sites through the grafting of 3-aminopropyltrimethoxysilane to the alumina surface under a variety of conditions, yielding the expected surface-grafted alkylamine groups, as demonstrated by FTIR spectroscopy and (29)Si and (13)C cross-polarization magic-angle spinning (CPMAS NMR) spectroscopy. Grafting amine sites on the surface in the presence of water leads to a high density of amine sites on the surface whereas simultaneously creating a unique type of aluminum species on the surface, as demonstrated by both 1D and 2D (27)Al MAS NMR spectroscopy. The thus prepared sorbents result in higher CO2 adsorption capacities and amine efficiencies compared to sorbents prepared in the absence of water or similar amine loading sorbents prepared using silica supports. In situ FTIR spectra of the sorbents exposed to CO2 at various pressures show no distinct difference in the nature of the adsorbed CO2 species on alumina- versus silica-supported amines, whereas water adsorption isotherms show that the improved performance of the amine-grafted alumina support is not a consequence of retained water on the more hydrophobic aminoalumina materials. The findings demonstrate that amine-grafted, basic alumina materials can be tuned to be more efficient than the corresponding silica-supported materials at comparable amine loadings, further demonstrating that the properties of amine sites can be tuned by controlling or adjusting the support surface properties.


Asunto(s)
Óxido de Aluminio/química , Dióxido de Carbono/química , Propilaminas/química , Silanos/química , Adsorción , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA