Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 653
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 327(1): H261-H267, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38787388

RESUMEN

Reduced peripheral microvascular reactivity is associated with an increased risk for major adverse cardiac events (MACEs). Tools for noninvasive assessment of peripheral microvascular function are limited, and existing technology is poorly validated in both healthy populations and patients with cardiovascular disease (CVD). Here, we used a handheld incident dark-field imaging tool (CytoCam) to test the hypothesis that, compared with healthy individuals (no risk factors for CVD), subjects formally diagnosed with coronary artery disease (CAD) or those with ≥2 risk factors for CAD (at risk) would exhibit impaired peripheral microvascular reactivity. A total of 17 participants (11 healthy, 6 at risk) were included in this pilot study. CytoCam was used to measure sublingual microvascular total vessel density (TVD), perfused vessel density (PVD), and microvascular flow index (MFI) in response to the topical application of acetylcholine (ACh) and sublingual administration of nitroglycerin (NTG). Baseline MFI and PVD were significantly reduced in the at-risk cohort compared with healthy individuals. Surprisingly, following the application of acetylcholine and nitroglycerin, both groups showed a significant improvement in all three microvascular perfusion parameters. These results suggest that, despite baseline reductions in both microvascular density and perfusion, human in vivo peripheral microvascular reactivity to both endothelial-dependent and -independent vasoactive agents remains intact in individuals with CAD or multiple risk factors for disease.NEW & NOTEWORTHY To our knowledge, this is the first study to comprehensively characterize in vivo sublingual microvascular structure and function (endothelium-dependent and -independent) in healthy patients and those with CVD. Importantly, we used an easy-to-use handheld device that can be easily translated to clinical settings. Our results indicate that baseline microvascular impairments in structure and function can be detected using the CytoCam technology, although reactivity to acetylcholine may be maintained even during disease in the peripheral microcirculation.


Asunto(s)
Enfermedad de la Arteria Coronaria , Microcirculación , Microvasos , Humanos , Masculino , Femenino , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/fisiopatología , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Anciano , Proyectos Piloto , Microvasos/diagnóstico por imagen , Microvasos/fisiopatología , Acetilcolina/farmacología , Adulto , Vasodilatadores/farmacología , Nitroglicerina/administración & dosificación , Nitroglicerina/farmacología , Estudios de Casos y Controles , Suelo de la Boca/irrigación sanguínea , Densidad Microvascular , Vasodilatación/efectos de los fármacos
2.
Exp Physiol ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38308846

RESUMEN

Circadian regulation of autonomic tone and reflex pathways pairs physiological processes with the daily light cycle. However, the underlying mechanisms mediating these changes on autonomic neurocircuitry are only beginning to be understood. The brainstem nucleus of the solitary tract (NTS) and adjacent nuclei, including the area postrema and dorsal motor nucleus of the vagus, are key candidates for rhythmic control of some aspects of the autonomic nervous system. Recent findings have contributed to a working model of circadian regulation in the brainstem which manifests from the transcriptional, to synaptic, to circuit levels of organization. Vagal afferent neurons and the NTS possess rhythmic clock gene expression, rhythmic action potential firing, and our recent findings demonstrate rhythmic spontaneous glutamate release. In addition, postsynaptic conductances also vary across the day producing subtle changes in membrane depolarization which govern synaptic efficacy. Together these coordinated pre- and postsynaptic changes provide nuanced control of synaptic transmission across the day to tune the sensitivity of primary afferent input and likely govern reflex output. Further, given the important role for the brainstem in integrating cues such as feeding, cardiovascular function and temperature, it may also be an underappreciated locus in mediating the effects of such non-photic entraining cues. This short review focuses on the neurophysiological principles that govern NTS synaptic transmission and how circadian rhythms impacted them across the day.

3.
J Physiol ; 601(10): 1881-1896, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36975145

RESUMEN

Circadian regulation of autonomic reflex pathways pairs physiological function with the daily light cycle. The brainstem nucleus of the solitary tract (NTS) is a key candidate for rhythmic control of the autonomic nervous system. Here we investigated circadian regulation of NTS neurotransmission and synaptic throughput using patch-clamp electrophysiology in brainstem slices from mice. We found that spontaneous quantal glutamate release onto NTS neurons showed strong circadian rhythmicity, with the highest rate of release during the light phase and the lowest in the dark, that were sufficient to drive day/night differences in constitutive postsynaptic action potential firing. In contrast, afferent evoked action potential throughput was enhanced during the dark and diminished in the light. Afferent-driven synchronous release pathways showed a similar decrease in release probability that did not explain the enhanced synaptic throughput during the night. However, analysis of postsynaptic membrane properties revealed diurnal changes in conductance, which, when coupled with the circadian changes in glutamate release pathways, tuned synaptic throughput between the light and dark phases. These coordinated pre-/postsynaptic changes encode nuanced control over synaptic performance and pair NTS action potential firing and vagal throughput with time of day. KEY POINTS: Vagal afferent neurons relay information from peripheral organs to the brainstem nucleus of the solitary tract (NTS) to initiate autonomic reflex pathways as well as providing important controls of food intake, digestive function and energy balance. Vagally mediated reflexes and behaviours are under strong circadian regulation. Diurnal fluctuations in presynaptic vesicle release pathways and postsynaptic membrane conductances provide nuanced control over NTS action potential firing and vagal synaptic throughput. Coordinated pre-/postsynaptic changes represent a fundamental mechanism mediating daily changes in vagal afferent signalling and autonomic function.


Asunto(s)
Ritmo Circadiano , Ácido Glutámico , Núcleo Solitario , Sinapsis , Ritmo Circadiano/fisiología , Ácido Glutámico/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/fisiología , Sinapsis/metabolismo , Neuronas Aferentes/metabolismo , Nervio Vago/citología , Nervio Vago/fisiología , Potenciales de Acción , Masculino , Animales , Ratones , Ganglio Nudoso/metabolismo , Transducción de Señal , Conductividad Eléctrica , Técnicas de Placa-Clamp
4.
J Virol ; 96(12): e0069022, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35647668

RESUMEN

Gammaherpesviruses (GHVs) are lymphotropic tumor viruses with a biphasic infectious cycle. Lytic replication at the primary site of infection is necessary for GHVs to spread throughout the host and establish latency in distal sites. Dissemination is mediated by infected B cells that traffic hematogenously from draining lymph nodes to peripheral lymphoid organs, such as the spleen. B cells serve as the major reservoir for viral latency, and it is hypothesized that periodic reactivation from latently infected B cells contributes to maintaining long-term chronic infection. While fundamentally important to an understanding of GHV biology, aspects of B cell infection in latency establishment and maintenance are incompletely defined, especially roles for lytic replication and reactivation in this cell type. To address this knowledge gap and overcome limitations of replication-defective viruses, we generated a recombinant murine gammaherpesvirus 68 (MHV68) in which ORF50, the gene that encodes the essential immediate-early replication and transcription activator protein (RTA), was flanked by loxP sites to enable conditional ablation of lytic replication by ORF50 deletion in cells that express Cre recombinase. Following infection of mice that encode Cre in B cells with this virus, splenomegaly and viral reactivation from splenocytes were significantly reduced; however, the number of latently infected splenocytes was equivalent to WT MHV68. Despite ORF50 deletion, MHV68 latency was maintained over time in spleens of mice at levels approximating WT, reactivation-competent MHV68. Treatment of infected mice with lipopolysaccharide (LPS), which promotes B cell activation and MHV68 reactivation ex vivo, yielded equivalent increases in the number of latently infected cells for both ORF50-deleted and WT MHV68, even when mice were simultaneously treated with the antiviral drug cidofovir to prevent reactivation. Together, these data demonstrate that productive viral replication in B cells is not required for MHV68 latency establishment and support the hypothesis that B cell proliferation facilitates latency maintenance in vivo in the absence of reactivation. IMPORTANCE Gammaherpesviruses establish lifelong chronic infections in cells of the immune system and place infected hosts at risk for developing lymphomas and other diseases. It is hypothesized that gammaherpesviruses must initiate acute infection in these cells to establish and maintain long-term infection, but this has not been directly tested. We report here the use of a viral genetic system that allows for cell-type-specific deletion of a viral gene that is essential for replication and reactivation. We employ this system in an in vivo model to reveal that viral replication is not required to initiate or maintain infection within B cells.


Asunto(s)
Linfocitos B , Infecciones por Herpesviridae , Proteínas Inmediatas-Precoces , Activación Viral , Animales , Linfocitos B/virología , Gammaherpesvirinae/genética , Gammaherpesvirinae/fisiología , Infecciones por Herpesviridae/virología , Proteínas Inmediatas-Precoces/genética , Ratones , Ratones Endogámicos C57BL , Latencia del Virus , Replicación Viral
5.
J Med Genet ; 59(7): 687-690, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34193467

RESUMEN

BACKGROUND: While an association between full mutation CGG-repeat expansions of the Fragile X Mental Retardation 1 (FMR1) gene and connective tissue problems are clearly described, problems in fragile X premutation carriers (fXPCs) CGG-repeat range (55-200 repeats) of the FMR1 gene may be overlooked. OBJECTIVE: To report five FMR1 fXPCs cases with the hypermobile Ehlers-Danlos syndrome (hEDS) phenotype. METHODS: We collected medical histories and FMR1 molecular measures from five cases who presented with joint hypermobility and loose connective tissue and met inclusion criteria for hEDS. RESULTS: Five cases were female and ranged between 16 and 49 years. The range of CGG-repeat allele sizes ranged from 66 to 150 repeats. All had symptoms of hEDS since early childhood. Commonalities in molecular pathogenesis and coexisting conditions between the fXPCs and hEDS are also presented. The premutation can lead to a reduction of fragile X mental retardation protein, which is crucial in maintaining functions of the extracellular matrix-related proteins, particularly matrix metallopeptidase 9 and elastin. Moreover, elevated FMR1 messenger RNA causes sequestration of proteins, which results in RNA toxicity. CONCLUSION: Both hEDS phenotype and premutation involvement may co-occur because of related commonalities in pathogenesis.


Asunto(s)
Síndrome de Ehlers-Danlos , Síndrome del Cromosoma X Frágil , Preescolar , Síndrome de Ehlers-Danlos/complicaciones , Síndrome de Ehlers-Danlos/diagnóstico , Síndrome de Ehlers-Danlos/genética , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/complicaciones , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Heterocigoto , Humanos , Masculino , Fenotipo , Expansión de Repetición de Trinucleótido/genética
6.
Catheter Cardiovasc Interv ; 99(1): 134-139, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34342936

RESUMEN

INTRODUCTION: Cranio-cervical artery dissection (CeAD) is a common cause of cerebrovascular events in young subjects with no clear treatment strategy established. We evaluated the incidence of major adverse cardiovascular events (MACE) in CeAD patients treated with and without stent placement. METHODS: COMParative effectiveness of treatment options in cervical Artery diSSection (COMPASS) is a single high-volume center observational, retrospective longitudinal registry that enrolled consecutive CeAD patients over a 2-year period. Patients were ≥ 18 years of age with confirmed extra- or intracranial CeAD on imaging. Enrolled participants were followed for 1 year evaluating MACE as the primary endpoint. RESULTS: One-hundred ten patients were enrolled (age 53 ± 15.9, 56% Caucasian, and 50% male, BMI 28.9 ± 9.2). Grade I, II, III, and IV blunt vascular injury was noted in 16%, 33%, 19%, and 32%, respectively. Predisposing factors were noted in the majority (78%), including sneezing, carrying heavy load, chiropractic manipulation. Stent was placed in 10 (10%) subjects (extracranial carotid n = 9; intracranial carotid n = 1; extracranial vertebral n = 1) at the physician's discretion along with medical management. Reasons for stent placement were early development of high-grade stenosis or expanding pseudoaneurysm. Stented patients experienced no procedural or in-hospital complications and no MACE between discharge and 1 year follow up. CeAD patients treated with medical management only had 14% MACE at 1 year. CONCLUSION: In this single high-volume center cohort of CeAD patients, stenting was found to be beneficial, particularly with development of high-grade stenosis or expanding pseudoaneurysm. These results warrant confirmation by a randomized clinical trial.


Asunto(s)
Disección de la Arteria Carótida Interna , Accidente Cerebrovascular , Disección de la Arteria Vertebral , Adulto , Anciano , Arterias , Disección , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , Stents , Resultado del Tratamiento , Disección de la Arteria Vertebral/diagnóstico por imagen , Disección de la Arteria Vertebral/terapia
7.
J Neurophysiol ; 125(1): 199-210, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33296617

RESUMEN

Vagal afferent fibers contact neurons in the nucleus of the solitary tract (NTS) and release glutamate via three distinct release pathways: synchronous, asynchronous, and spontaneous. The presence of TRPV1 in vagal afferents is predictive of activity-dependent asynchronous glutamate release along with temperature-sensitive spontaneous vesicle fusion. However, pharmacological blockade or genetic deletion of TRPV1 does not eliminate the asynchronous profile and only attenuates the temperature-dependent spontaneous release at high temperatures (>40°C), indicating additional temperature-sensitive calcium conductance(s) contributing to these release pathways. The transient receptor potential cation channel melastatin subtype 3 (TRPM3) is a calcium-selective channel that functions as a thermosensor (30-37°C) in somatic primary afferent neurons. We predict that TRPM3 is expressed in vagal afferent neurons and contributes to asynchronous and spontaneous glutamate release pathways. We investigated these hypotheses via measurements on cultured nodose neurons and in brainstem slice preparations containing vagal afferent to NTS synaptic contacts. We found histological and genetic evidence that TRPM3 is highly expressed in vagal afferent neurons. The TRPM3-selective agonist, pregnenolone sulfate, rapidly and reversibly activated the majority (∼70%) of nodose neurons; most of which also contained TRPV1. We confirmed the role of TRPM3 with pharmacological blockade and genetic deletion. In the brain, TRPM3 signaling strongly controlled both basal and temperature-driven spontaneous glutamate release. Surprisingly, genetic deletion of TRPM3 did not alter synchronous or asynchronous glutamate release. These results provide convergent evidence that vagal afferents express functional TRPM3 that serves as an additional temperature-sensitive calcium conductance involved in controlling spontaneous glutamate release onto neurons in the NTS.NEW & NOTEWORTHY Vagal afferent signaling coordinates autonomic reflex function and informs associated behaviors. Thermosensitive transient receptor potential (TRP) channels detect temperature and nociceptive stimuli in somatosensory afferent neurons, however their role in vagal signaling remains less well understood. We report that the TRPM3 ion channel provides a major thermosensitive point of control over vagal signaling and synaptic transmission. We conclude that TRPM3 translates physiological changes in temperature to neurophysiological outputs and can serve as a cellular integrator in vagal afferent signaling.


Asunto(s)
Ácido Glutámico/metabolismo , Neuronas Aferentes/metabolismo , Canales Catiónicos TRPM/metabolismo , Nervio Vago/metabolismo , Potenciales de Acción , Animales , Potenciales Postsinápticos Excitadores , Exocitosis , Calor , Masculino , Neuronas Aferentes/fisiología , Pregnenolona/farmacología , Ratas , Ratas Sprague-Dawley , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/genética , Nervio Vago/citología , Nervio Vago/fisiología
8.
J Virol ; 95(1)2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-33028711

RESUMEN

Gammaherpesviruses (GHVs) are DNA tumor viruses that establish lifelong, chronic infections in lymphocytes of humans and other mammals. GHV infections are associated with numerous cancers, especially in immunocompromised hosts. While it is known that GHVs utilize host germinal center (GC) B cell responses during latency establishment, an understanding of how viral gene products function in specific B cell subsets to regulate this process is incomplete. Using murine gammaherpesvirus 68 (MHV68) as a small-animal model to define mechanisms of GHV pathogenesis in vivo, we generated a virus in which the M2 gene was flanked by loxP sites (M2.loxP), enabling the use of Cre-lox technology to define M2 function in specific cell types in infection and disease. The M2 gene encodes a protein that is highly expressed in GC B cells that promotes plasma cell differentiation and viral reactivation. M2 was efficiently deleted in Cre-expressing cells, and the presence of loxP sites flanking M2 did not alter viral replication or latency in mice that do not express Cre. In contrast, M2.loxP MHV68 exhibited a deficit in latency establishment and reactivation that resembled M2-null virus, following intranasal (IN) infection of mice that express Cre in all B cells (CD19-Cre). Nearly identical phenotypes were observed for M2.loxP MHV68 in mice that express Cre in germinal center (GC) B cells (AID-Cre). However, colonization of neither draining lymph nodes after IN infection nor the spleen after intraperitoneal (IP) infection required M2, although the reactivation defect was retained. Together, these data confirm that M2 function is B cell-specific and demonstrate that M2 primarily functions in AID-expressing cells to facilitate MHV68 dissemination to distal latency reservoirs within the host and reactivation from latency. Our study reveals that a viral latency gene functions within a distinct subset of cells to facilitate host colonization.IMPORTANCE Gammaherpesviruses establish lifelong chronic infections in cells of the immune system that can lead to lymphomas and other diseases. To facilitate colonization of a host, gammaherpesviruses encode gene products that manipulate processes involved in cellular proliferation and differentiation. Whether and how these viral gene products function in specific cells of the immune system is poorly defined. We report here the use of a viral genetic system that allows for deletion of specific viral genes in discrete populations of cells. We employ this system in an in vivo model to demonstrate cell-type-specific requirements for a particular viral gene. Our findings reveal that a viral gene product can function in distinct cellular subsets to direct gammaherpesvirus pathogenesis.


Asunto(s)
Linfocitos B/inmunología , Citidina Desaminasa/inmunología , Infecciones por Herpesviridae/virología , Rhadinovirus/fisiología , Proteínas Virales/inmunología , Activación Viral , Animales , Antígenos CD19/metabolismo , Linfocitos B/virología , Diferenciación Celular , Proliferación Celular , Centro Germinal/inmunología , Centro Germinal/virología , Infecciones por Herpesviridae/inmunología , Tejido Linfoide/inmunología , Tejido Linfoide/virología , Ratones , Rhadinovirus/genética , Rhadinovirus/metabolismo , Proteínas Virales/genética , Latencia del Virus
9.
PLoS Pathog ; 15(12): e1008156, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31790497

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human cancers, such as Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). Current treatment options for KSHV infection and virus associated diseases are sometimes ineffective, therefore, more effectively antiviral agents are urgently needed. As a herpesvirus, lytic replication is critical for KSHV pathogenesis and oncogenesis. In this study, we have established a high-throughput screening assay by using an inducible KSHV+ cell-line, iSLK.219. After screening a compound library that consisted of 1280 Food and Drug Administration (FDA)-approved drugs, 15 hit compounds that effectively inhibited KSHV virion production were identified, most of which have never been reported with anti-KSHV activities. Interestingly, 3 of these drugs target histamine receptors or signaling. Our data further confirmed that antagonists targeting different histamine receptors (HxRs) displayed excellent inhibitory effects on KSHV lytic replication from induced iSLK.219 or BCBL-1 cells. In contrast, histamine and specific agonists of HxRs promoted viral lytic replication from induced iSLK.219 or KSHV-infected primary cells. Mechanistic studies indicated that downstream MAPK and PI3K/Akt signaling pathways were required for histamine/receptors mediated promotion of KSHV lytic replication. Direct knockdown of HxRs in iSLK.219 cells effectively blocked viral lytic gene expression during induction. Using samples from a cohort of HIV+ patients, we found that the KSHV+ group has much higher levels of histamine in their plasma and saliva than the KSHV- group. Taken together, our data have identified new anti-KSHV agents and provided novel insights into the molecular bases of host factors that contribute to lytic replication and reactivation of this oncogenic herpesvirus.


Asunto(s)
Antivirales/farmacología , Herpesvirus Humano 8/efectos de los fármacos , Histamina/metabolismo , Sarcoma de Kaposi/virología , Activación Viral/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Herpesvirus Humano 8/fisiología , Ensayos Analíticos de Alto Rendimiento , Humanos , Receptores Histamínicos/metabolismo , Transducción de Señal/fisiología , Activación Viral/fisiología , Latencia del Virus/efectos de los fármacos , Latencia del Virus/fisiología
10.
Am J Physiol Cell Physiol ; 319(6): C1097-C1106, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32966126

RESUMEN

Circulating blood glucocorticoid levels are dynamic and responsive to stimuli that impact autonomic function. In the brain stem, vagal afferent terminals release the excitatory neurotransmitter glutamate to neurons in the nucleus of the solitary tract (NTS). Vagal afferents integrate direct visceral signals and circulating hormones with ongoing NTS activity to control autonomic function and behavior. Here, we investigated the effects of corticosterone (CORT) on glutamate signaling in the NTS using patch-clamp electrophysiology on brain stem slices containing the NTS and central afferent terminals from male C57BL/6 mice. We found that CORT rapidly decreased both action potential-evoked and spontaneous glutamate signaling. The effects of CORT were phenocopied by dexamethasone and blocked by mifepristone, consistent with glucocorticoid receptor (GR)-mediated signaling. While mRNA for GR was present in both the NTS and vagal afferent neurons, selective intracellular quenching of G protein signaling in postsynaptic NTS neurons eliminated the effects of CORT. We then investigated the contribution of retrograde endocannabinoid signaling, which has been reported to transduce nongenomic GR effects. Pharmacological or genetic elimination of the cannabinoid type 1 receptor signaling blocked CORT suppression of glutamate release. Together, our results detail a mechanism, whereby the NTS integrates endocrine CORT signals with fast neurotransmission to control autonomic reflex pathways.


Asunto(s)
Corticosterona/farmacología , Endocannabinoides/metabolismo , Ácido Glutámico/metabolismo , Neuronas Aferentes/metabolismo , Núcleo Solitario/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Animales , Dexametasona/farmacología , Potenciales Evocados/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mifepristona/farmacología , Técnicas de Placa-Clamp , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
11.
J Neurophysiol ; 124(5): 1388-1398, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32965166

RESUMEN

Vagal afferent neurons abundantly express excitatory transient receptor potential (TRP) channels, which strongly influence afferent signaling. Cannabinoids have been identified as direct agonists of TRP channels, including TRPA1 and TRPV1, suggesting that exogenous cannabinoids may influence vagal signaling via TRP channel activation. The diverse therapeutic effects of electrical vagus nerve stimulation also result from administration of the nonpsychotropic cannabinoid, cannabidiol (CBD); however, the direct effects of CBD on vagal afferent signaling remain unknown. We investigated actions of CBD on vagal afferent neurons, using calcium imaging and electrophysiology. CBD produced strong excitatory effects in neurons expressing TRPA1. CBD responses were prevented by removal of bath calcium, ruthenium red, and the TRPA1 antagonist A967079, but not the TRPV1 antagonist SB366791, suggesting an essential role for TRPA1. These pharmacological experiments were confirmed using genetic knockouts where TRPA1 KO mice lacked CBD responses, whereas TRPV1 knockout (KO) mice exhibited CBD-induced activation. We also characterized CBD-provoked inward currents at resting potentials in vagal afferents expressing TRPA1 that were absent in TRPA1 KO mice, but persisted in TRPV1 KO mice. CBD also inhibited voltage-activated sodium conductances in A-fiber, but not in C-fiber afferents. To simulate adaptation, resulting from chronic cannabis use, we administered cannabis extract vapor daily for 3 wk. Cannabis exposure reduced the magnitude of CBD responses, likely due to a loss of TRPA1 signaling. Together, these findings detail a novel excitatory action of CBD at vagal afferent neurons, which requires TRPA1 and may contribute to the vagal mimetic effects of CBD and adaptation following chronic cannabis use.NEW & NOTEWORTHY CBD usage has increased with its legalization. The clinical efficacy of CBD has been demonstrated for conditions including some forms of epilepsy, depression, and anxiety that are also treatable by vagus nerve stimulation. We found CBD exhibited direct excitatory effects on vagal afferent neurons that required TRPA1, were augmented by TRPV1, and attenuated following chronic cannabis vapor exposure. These effects may contribute to vagal mimetic effects of CBD and adaptation after chronic cannabis use.


Asunto(s)
Cannabidiol/administración & dosificación , Canal Catiónico TRPA1/fisiología , Canales Catiónicos TRPV/fisiología , Nervio Vago/fisiología , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Masculino , Ratones Noqueados , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Imagen Óptica , Ratas Sprague-Dawley , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPV/genética , Nervio Vago/efectos de los fármacos
12.
PLoS Pathog ; 14(1): e1006865, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29364981

RESUMEN

Gammaherpesvirus (GHV) pathogenesis is a complex process that involves productive viral replication, dissemination to tissues that harbor lifelong latent infection, and reactivation from latency back into a productive replication cycle. Traditional loss-of-function mutagenesis approaches in mice using murine gammaherpesvirus 68 (MHV68), a model that allows for examination of GHV pathogenesis in vivo, have been invaluable for defining requirements for specific viral gene products in GHV infection. But these approaches are insufficient to fully reveal how viral gene products contribute when the encoded protein facilitates multiple processes in the infectious cycle and when these functions vary over time and from one host tissue to another. To address this complexity, we developed an MHV68 genetic platform that enables cell-type-specific and inducible viral gene deletion in vivo. We employed this system to re-evaluate functions of the MHV68 latency-associated nuclear antigen (mLANA), a protein with roles in both viral replication and latency. Cre-mediated deletion in mice of loxP-flanked ORF73 demonstrated the necessity of mLANA in B cells for MHV68 latency establishment. Impaired latency during the transition from draining lymph nodes to blood following mLANA deletion also was observed, supporting the hypothesis that B cells are a major conduit for viral dissemination. Ablation of mLANA in infected germinal center (GC) B cells severely impaired viral latency, indicating the importance of viral passage through the GC for latency establishment. Finally, induced ablation of mLANA during latency resulted in complete loss of affected viral genomes, indicating that mLANA is critically important for maintenance of viral genomes during stable latency. Collectively, these experiments provide new insights into LANA homolog functions in GHV colonization of the host and highlight the potential of a new MHV68 genetic platform to foster a more complete understanding of viral gene functions at discrete stages of GHV pathogenesis.


Asunto(s)
Antígenos Nucleares/genética , Gammaherpesvirinae/genética , Proteínas Virales/genética , Células 3T3 , Animales , Células Cultivadas , Enfermedad Crónica , Embrión de Mamíferos , Femenino , Gammaherpesvirinae/patogenicidad , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutagénesis/fisiología , Células 3T3 NIH , Especificidad de Órganos , Latencia del Virus/genética
13.
J Gen Virol ; 100(5): 851-862, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30907723

RESUMEN

Epstein-Barr virus (EBV) establishes a life-long latency in memory B cells, whereas plasma cell differentiation is linked to EBV lytic reactivation from latently infected B cells. EBV lytic replication is mediated by the two immediate-early switch proteins Zta and RTA. Both plasma cell transcription factors XBP-1 and Blimp-1 have been shown to enable the triggering of EBV lytic reactivation by activating the transcription of Zta or RTA. Here we show that interferon regulatory factor 4 (IRF4), another plasma cell transcription factor that is either not expressed or expressed at a low level in EBV-positive Burkitt's lymphoma (BL) cells, can activate the promoters of EBV Zta and RTA, but is not sufficient to elicit EBV lytic reactivation in latently infected BL cells. However, ectopic IRF4 expression can augment EBV lytic gene expression induced by anti-immunoglobulin (anti-Ig) or sodium butyrate treatment in all tested lymphoma cells, whereas IRF4 knockout in Raji cells, the only BL cell line with detectable endogenous IRF4 expression, abolishes EBV lytic gene expression induced by anti-Ig, and this is accompanied by the reduction of Blimp-1 expression, whose overexpression, in turn, can rescue EBV lytic gene expression in IRF4 knockout Raji cells. Furthermore, IRF4 knockout impairs B cell receptor (BCR) signalling activation, which is required for BCR-mediated EBV reactivation. Altogether, these results demonstrate that IRF4 facilitates EBV lytic reactivation in BL cells, which involves the regulation of Blimp-1 expression and BCR signalling pathways.


Asunto(s)
Linfoma de Burkitt/virología , Infecciones por Virus de Epstein-Barr/virología , Herpesvirus Humano 4/genética , Factores Reguladores del Interferón/genética , Linfocitos B/virología , Línea Celular Tumoral , Regulación Viral de la Expresión Génica/genética , Humanos , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Regiones Promotoras Genéticas/genética , Transducción de Señal/genética , Proteínas Virales/genética , Activación Viral/genética , Latencia del Virus/genética
14.
J Virol ; 91(19)2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28747501

RESUMEN

Latency-associated nuclear antigen (LANA) is a multifunctional protein encoded by members of the Rhadinovirus genus of gammaherpesviruses. Studies using murine gammaherpesvirus 68 (MHV68) demonstrated that LANA is important for acute replication, latency establishment, and reactivation in vivo Despite structural similarities in their DNA-binding domains (DBDs), LANA homologs from Kaposi sarcoma-associated herpesvirus (KSHV) and MHV68 exhibit considerable sequence divergence. We sought to determine if KSHV and MHV68 LANA homologs are functionally interchangeable. We generated an MHV68 virus that encodes KSHV LANA (kLANA) in place of MHV68 LANA (mLANA) and evaluated the virus's capacity to replicate, establish and maintain latency, and reactivate. kLANA knock-in (KLKI) MHV68 was replication competent in vitro and in vivo but exhibited slower growth kinetics and lower titers than wild-type (WT) MHV68. Following inoculation of mice, KLKI MHV68 established and maintained latency in splenocytes and peritoneal cells but did not reactivate efficiently ex vivo kLANA repressed the MHV68 promoter for ORF50, the gene that encodes the major lytic transactivator protein RTA, while mLANA did not, suggesting a likely mechanism for the KLKI MHV68 phenotypes. Bypassing this repression by providing MHV68 RTA in trans rescued KLKI MHV68 replication in tissue culture and enabled detection of KLKI MHV68 reactivation ex vivo These data demonstrate that kLANA and mLANA are functionally interchangeable for establishment and maintenance of latency and suggest that repression of lytic replication by kLANA, as previously shown with KSHV, is a kLANA-specific function that is transferable to MHV68.IMPORTANCE Kaposi sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68) are members of the Rhadinovirus genus of gammaherpesviruses. These viruses establish lifelong infections that place their respective human and murine hosts at risk for cancer. Latency-associated nuclear antigen (LANA) is a conserved Rhadinovirus protein that is necessary for long-term chronic infection by these viruses. To better understand the conserved functions performed by LANA homologs, we generated a recombinant MHV68 virus that encodes the KSHV LANA protein in place of the MHV68 LANA homolog. We determined that the KSHV LANA protein is capable of supporting MHV68 latency in a mouse model of chronic infection but also functions to repress viral replication. This work describes an in vivo model system for defining evolutionarily conserved and divergent functions of LANA homologs in Rhadinovirus infection and disease.


Asunto(s)
Antígenos Virales/genética , Herpesvirus Humano 8/crecimiento & desarrollo , Proteínas Inmediatas-Precoces/genética , Proteínas Nucleares/genética , Rhadinovirus/crecimiento & desarrollo , Transactivadores/genética , Latencia del Virus/genética , Células 3T3 , Animales , Antígenos Virales/biosíntesis , Línea Celular , Femenino , Técnicas de Sustitución del Gen , Células HEK293 , Herpesvirus Humano 8/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/biosíntesis , Regiones Promotoras Genéticas/genética , Rhadinovirus/genética , Rhadinovirus/metabolismo
15.
J Pharmacol Exp Ther ; 362(3): 368-377, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28620120

RESUMEN

The nonselective cation channel transient receptor potential ankryn subtype family 1 (TRPA1) is expressed in neurons of dorsal root ganglia and trigeminal ganglia and also in vagal afferent neurons that innervate the lungs and gastrointestinal tract. Many TRPA1 agonists are reactive electrophilic compounds that form covalent adducts with TRPA1. Allyl isothiocyanate (AITC), the common agonist used to identify TRPA1, contains an electrophilic group that covalently binds with cysteine residues of TRPA1 and confers a structural change on the channel. There is scientific motivation to identify additional compounds that can activate TRPA1 with different mechanisms of channel gating. We provide evidence that ethyl vanillin (EVA) is a TRPA1 agonist. Using fluorescent calcium imaging and whole-cell patch-clamp electrophysiology on dissociated rat vagal afferent neurons and TRPA1-transfected COS-7 cells, we discovered that EVA activates cells also activated by AITC. Both agonists display similar current profiles and conductances. Pretreatment with A967079, a selective TRPA1 antagonist, blocks the EVA response as well as the AITC response. Furthermore, EVA does not activate vagal afferent neurons from TRPA1 knockout mice, showing selectivity for TRPA1 in this tissue. Interestingly, EVA appears to be pharmacologically different from AITC as a TRPA1 agonist. When AITC is applied before EVA, the EVA response is occluded. However, they both require intracellular oxidation to activate TRPA1. These findings suggest that EVA activates TRPA1 but via a distinct mechanism that may provide greater ease for study in native systems compared with AITC and may shed light on differential modes of TRPA1 gating by ligand types.


Asunto(s)
Benzaldehídos/farmacología , Canales Catiónicos TRPC/agonistas , Animales , Células COS , Chlorocebus aethiops , Células HEK293 , Humanos , Isotiocianatos/farmacología , Masculino , Ratones , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Ganglio Nudoso/citología , Ganglio Nudoso/efectos de los fármacos , Oximas/farmacología , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Canal Catiónico TRPA1 , Canales Catiónicos TRPC/antagonistas & inhibidores , Canales Catiónicos TRPC/genética
16.
J Virol ; 90(3): 1397-413, 2016 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-26581985

RESUMEN

UNLABELLED: Latency-associated nuclear antigen (LANA) is a conserved, multifunctional protein encoded by members of the rhadinovirus subfamily of gammaherpesviruses, including Kaposi sarcoma-associated herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68). We previously demonstrated that MHV68 LANA (mLANA) is required for efficient lytic replication. However, mechanisms by which mLANA facilitates viral replication, including interactions with cellular and viral proteins, are not known. Thus, we performed a mass spectrometry-based interaction screen that defined an mLANA protein-protein interaction network for lytic viral replication consisting of 15 viral proteins and 191 cellular proteins, including 19 interactions previously reported in KSHV LANA interaction studies. We also employed a stable-isotope labeling technique to illuminate high-priority mLANA-interacting host proteins. Among the top prioritized mLANA-binding proteins was a cellular chaperone, heat shock cognate protein 70 (Hsc70). We independently validated the mLANA-Hsc70 interaction through coimmunoprecipitation and in vitro glutathione S-transferase (GST) pulldown assays. Immunofluorescence and cellular fractionation analyses comparing wild-type (WT) to mLANA-null MHV68 infections demonstrated mLANA-dependent recruitment of Hsc70 to nuclei of productively infected cells. Pharmacologic inhibition and small hairpin RNA (shRNA)-mediated knockdown of Hsc70 impaired MHV68 lytic replication, which functionally correlated with impaired viral protein expression, reduced viral DNA replication, and failure to form viral replication complexes. Replication of mLANA-null MHV68 was less affected than that of WT virus by Hsc70 inhibition, which strongly suggests that Hsc70 function in MHV68 lytic replication is at least partially mediated by its interaction with mLANA. Together these experiments identify proteins engaged by mLANA during the MHV68 lytic replication cycle and define a previously unknown role for Hsc70 in facilitating MHV68 lytic replication. IMPORTANCE: Latency-associated nuclear antigen (LANA) is a conserved gamma-2-herpesvirus protein important for latency maintenance and pathogenesis. For MHV68, this includes regulating lytic replication and reactivation. While previous studies of KSHV LANA defined interactions with host cell proteins that impact latency, interactions that facilitate productive viral replication are not known. Thus, we performed a differential proteomics analysis to identify and prioritize cellular and viral proteins that interact with the MHV68 LANA homolog during lytic infection. Among the proteins identified was heat shock cognate protein 70 (Hsc70), which we determined is recruited to host cell nuclei in an mLANA-dependent process. Moreover, Hsc70 facilitates MHV68 protein expression and DNA replication, thus contributing to efficient MHV68 lytic replication. These experiments expand the known LANA-binding proteins to include MHV68 lytic replication and demonstrate a previously unappreciated role for Hsc70 in regulating viral replication.


Asunto(s)
Antígenos Virales/metabolismo , Interacciones Huésped-Patógeno , Proteínas Nucleares/metabolismo , Rhadinovirus/fisiología , Replicación Viral , Animales , Antígenos Virales/genética , Línea Celular , Centrifugación , Eliminación de Gen , Inmunoprecipitación , Marcaje Isotópico , Espectrometría de Masas , Ratones , Proteínas Nucleares/genética , Unión Proteica , Mapas de Interacción de Proteínas , Rhadinovirus/genética
17.
Adv Exp Med Biol ; 1018: 225-236, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29052141

RESUMEN

Murine gammaherpesvirus 68 (MHV68) is a naturally occurring pathogen of murid rodents that is genetically related to the human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi sarcoma-associated herpesvirus (KSHV). Viral, immunologic, and disease parameters following experimental infection of laboratory mice with MHV68 closely resemble what occurs during primary EBV infection of humans, which suggests that MHV68 infection of mice offers a small animal model to study in general the pathogenesis of gammaherpesvirus infections. Diseases elicited by MHV68 infection include lymphoproliferative diseases, idiopathic pulmonary fibrosis, and autoimmune diseases, ailments also associated with EBV infection of humans. Furthermore, MHV68 infection also is linked to the development of vasculitis, encephalomyelitis, and other disorders that resemble pathologies with viral and nonviral etiologies in humans. This review aims to provide an overview of MHV68-associated diseases in infected mice that may provide a model for understanding basic mechanisms by which similar diseases in humans occur and can be treated.


Asunto(s)
Infecciones por Virus de Epstein-Barr/virología , Gammaherpesvirinae/genética , Infecciones por Herpesviridae/genética , Infecciones Tumorales por Virus/genética , Animales , Linfocitos B/virología , Modelos Animales de Enfermedad , Infecciones por Virus de Epstein-Barr/genética , Infecciones por Virus de Epstein-Barr/patología , Gammaherpesvirinae/patogenicidad , Regulación Viral de la Expresión Génica , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Humanos , Ratones , Infecciones Tumorales por Virus/patología , Infecciones Tumorales por Virus/virología , Latencia del Virus/genética
18.
J Virol ; 90(5): 2571-85, 2015 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-26676792

RESUMEN

UNLABELLED: Tumor suppressor p53 is activated in response to numerous cellular stresses, including viral infection. However, whether murine gammaherpesvirus 68 (MHV68) provokes p53 during the lytic replication cycle has not been extensively evaluated. Here, we demonstrate that MHV68 lytic infection induces p53 phosphorylation and stabilization in a manner that is dependent on the DNA damage response (DDR) kinase ataxia telangiectasia mutated (ATM). The induction of p53 during MHV68 infection occurred in multiple cell types, including splenocytes of infected mice. ATM and p53 activation required early viral gene expression but occurred independently of viral DNA replication. At early time points during infection, p53-responsive cellular genes were induced, coinciding with p53 stabilization and phosphorylation. However, p53-related gene expression subsided as infection progressed, even though p53 remained stable and phosphorylated. Infected cells also failed to initiate p53-dependent gene expression and undergo apoptosis in response to treatment with exogenous p53 agonists. The inhibition of p53 responses during infection required the expression of the MHV68 homologs of the shutoff and exonuclease protein (muSOX) and latency-associated nuclear antigen (mLANA). Interestingly, mLANA, but not muSOX, was necessary to prevent p53-mediated death in MHV68-infected cells under the conditions tested. This suggests that muSOX and mLANA are differentially required for inhibiting p53 in specific settings. These data reveal that DDR responses triggered by MHV68 infection promote p53 activation. However, MHV68 encodes at least two proteins capable of limiting the potential consequences of p53 function. IMPORTANCE: Gammaherpesviruses are oncogenic herpesviruses that establish lifelong chronic infections. Defining how gammaherpesviruses overcome host responses to infection is important for understanding how these viruses infect and cause disease. Here, we establish that murine gammaherpesvirus 68 induces the activation of tumor suppressor p53. p53 activation was dependent on the DNA damage response kinase ataxia telangiectasia mutated. Although active early after infection, p53 became dominantly inhibited as the infection cycle progressed. Viral inhibition of p53 was mediated by the murine gammaherpesvirus 68 homologs of muSOX and mLANA. The inhibition of the p53 pathway enabled infected cells to evade p53-mediated cell death responses. These data demonstrate that a gammaherpesvirus encodes multiple proteins to limit p53-mediated responses to productive viral infection, which likely benefits acute viral replication and the establishment of chronic infection.


Asunto(s)
Interacciones Huésped-Patógeno , Rhadinovirus/fisiología , Proteína p53 Supresora de Tumor/antagonistas & inhibidores , Proteínas Virales/metabolismo , Replicación Viral , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Femenino , Ratones Endogámicos C57BL , Fosforilación , Procesamiento Proteico-Postraduccional
19.
PLoS Pathog ; 10(2): e1003916, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24516386

RESUMEN

Gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) establish lifelong latency in their hosts and are associated with the development of several types of malignancies, including a subset of B cell lymphomas. These viruses are thought to co-opt the process of B cell differentiation to latently infect a fraction of circulating memory B cells, resulting in the establishment of a stable latency setpoint. However, little is known about how this infected memory B cell compartment is maintained throughout the life of the host. We have previously demonstrated that immature and transitional B cells are long-term latency reservoirs for murine gammaherpesvirus 68 (MHV68), suggesting that infection of developing B cells contributes to the maintenance of lifelong latency. During hematopoiesis, immature and transitional B cells are subject to B cell receptor (BCR)-mediated negative selection, which results in the clonal deletion of autoreactive B cells. Interestingly, numerous gammaherpesviruses encode homologs of the anti-apoptotic protein Bcl-2, suggesting that virus inhibition of apoptosis could subvert clonal deletion. To test this, we quantified latency establishment in mice inoculated with MHV68 vBcl-2 mutants. vBcl-2 mutant viruses displayed a marked decrease in the frequency of immature and transitional B cells harboring viral genome, but this attenuation could be rescued by increased host Bcl-2 expression. Conversely, vBcl-2 mutant virus latency in early B cells and mature B cells, which are not targets of negative selection, was remarkably similar to wild-type virus. Finally, in vivo depletion of developing B cells during chronic infection resulted in decreased mature B cell latency, demonstrating a key role for developing B cells in the maintenance of lifelong latency. Collectively, these findings support a model in which gammaherpesvirus latency in circulating mature B cells is sustained in part through the recurrent infection and vBcl-2-mediated survival of developing B cells.


Asunto(s)
Linfocitos B/virología , Gammaherpesvirinae/fisiología , Infecciones por Herpesviridae/inmunología , Proteínas Proto-Oncogénicas c-bcl-2/inmunología , Infecciones Tumorales por Virus/inmunología , Latencia del Virus/inmunología , Animales , Apoptosis/inmunología , Linfocitos B/citología , Western Blotting , Diferenciación Celular/inmunología , Supervivencia Celular/inmunología , Citometría de Flujo , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa , Receptores de Antígenos de Linfocitos B/inmunología
20.
Eur Phys J E Soft Matter ; 39(10): 99, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27770313

RESUMEN

We introduce a simple and sensitive technique for measuring extremely low solubilities with a small sample size and small solvent volume. This technique involves measuring the decrease in the thickness of a supported thin film after exposure to a drop of known volume of solvent and removal of the solution. The feasibility of measuring very small changes in film thickness directly translates to the ability to measure extremely low solubility while at the same time using only µL of solvent. We apply the technique to the case of polystyrene with Mw values in the range 2500 g/mol to 22200 g/mol in alkane solvents and show that we can easily measure a solubility of 0.1 g/L using only 1[Formula: see text] g of material and 3[Formula: see text] L of solvent for each sample.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA