Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
EMBO J ; 38(13): e101032, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31268609

RESUMEN

The molecular mechanisms discriminating between regenerative failure and success remain elusive. While a regeneration-competent peripheral nerve injury mounts a regenerative gene expression response in bipolar dorsal root ganglia (DRG) sensory neurons, a regeneration-incompetent central spinal cord injury does not. This dichotomic response offers a unique opportunity to investigate the fundamental biological mechanisms underpinning regenerative ability. Following a pharmacological screen with small-molecule inhibitors targeting key epigenetic enzymes in DRG neurons, we identified HDAC3 signalling as a novel candidate brake to axonal regenerative growth. In vivo, we determined that only a regenerative peripheral but not a central spinal injury induces an increase in calcium, which activates protein phosphatase 4 that in turn dephosphorylates HDAC3, thus impairing its activity and enhancing histone acetylation. Bioinformatics analysis of ex vivo H3K9ac ChIPseq and RNAseq from DRG followed by promoter acetylation and protein expression studies implicated HDAC3 in the regulation of multiple regenerative pathways. Finally, genetic or pharmacological HDAC3 inhibition overcame regenerative failure of sensory axons following spinal cord injury. Together, these data indicate that PP4-dependent HDAC3 dephosphorylation discriminates between axonal regeneration and regenerative failure.


Asunto(s)
Ganglios Espinales/fisiología , Histona Desacetilasas/metabolismo , Traumatismos de los Nervios Periféricos/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Axones , Células Cultivadas , Modelos Animales de Enfermedad , Epigénesis Genética/efectos de los fármacos , Femenino , Masculino , Ratones , Regeneración Nerviosa , Fosforilación/efectos de los fármacos , Transducción de Señal
2.
J Neurosci ; 34(25): 8630-45, 2014 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-24948817

RESUMEN

Correlative evidence suggests that GABAergic signaling plays an important role in the regulation of activity-dependent hippocampal neurogenesis and emotional behavior in adult mice. However, whether these are causally linked at the molecular level remains elusive. Nuclear factor of activated T cell (NFAT) proteins are activity-dependent transcription factors that respond to environmental stimuli in different cell types, including hippocampal newborn neurons. Here, we identify NFATc4 as a key activity-dependent transcriptional regulator of GABA signaling in hippocampal progenitor cells via an unbiased high-throughput genome-wide study. Next, we demonstrate that GABAA receptor (GABAAR) signaling modulates hippocampal neurogenesis through NFATc4 activity, which in turn regulates GABRA2 and GABRA4 subunit expression via binding to specific promoter responsive elements, as assessed by ChIP and luciferase assays. Furthermore, we show that selective pharmacological enhancement of GABAAR activity promotes hippocampal neurogenesis via the calcineurin/NFATc4 axis. Importantly, the NFATc4-dependent increase in hippocampal neurogenesis after GABAAR stimulation is required for the suppression of the anxiety response in mice. Together, these data provide a novel molecular insight into the regulation of the anxiety response in mice, suggesting that the GABAAR/NFATc4 axis is a druggable target for the therapy of emotional disorders.


Asunto(s)
Ansiedad/metabolismo , Ansiedad/prevención & control , Factores de Transcripción NFATC/metabolismo , Neurogénesis/fisiología , Receptores de GABA-A/fisiología , Transducción de Señal/fisiología , Animales , Ansiedad/patología , Hipocampo/citología , Hipocampo/metabolismo , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados
3.
J Neurosci ; 33(36): 14318-30, 2013 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24005285

RESUMEN

Mounting evidence points to a role for endogenous reactive oxygen species (ROS) in cell signaling, including in the control of cell proliferation, differentiation, and fate. However, the function of ROS and their molecular regulation in embryonic mouse neural progenitor cells (eNPCs) has not yet been clarified. Here, we describe that physiological ROS are required for appropriate timing of neurogenesis in the developing telencephalon in vivo and in cultured NPCs, and that the tumor suppressor p53 plays a key role in the regulation of ROS-dependent neurogenesis. p53 loss of function leads to elevated ROS and early neurogenesis, while restoration of p53 and antioxidant treatment partially reverse the phenotype associated with premature neurogenesis. Furthermore, we describe that the expression of a number of neurogenic and oxidative stress genes relies on p53 and that both p53 and ROS-dependent induction of neurogenesis depend on PI3 kinase/phospho-Akt signaling. Our results suggest that p53 fine-tunes endogenous ROS levels to ensure the appropriate timing of neurogenesis in eNPCs. This may also have implications for the generation of tumors of neurodevelopmental origin.


Asunto(s)
Células-Madre Neurales/metabolismo , Neurogénesis , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Animales , Células Cultivadas , Ratones , Células-Madre Neurales/citología , Estrés Oxidativo/genética , Telencéfalo/citología , Telencéfalo/embriología , Telencéfalo/metabolismo , Proteína p53 Supresora de Tumor/genética
4.
Front Mol Neurosci ; 8: 21, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26124703

RESUMEN

In recent years, the ubiquitin-editing enzyme A20 has been shown to control a large set of molecular pathways involved in the regulation of protective as well as self-directed immune responses. Here, we assess the current and putative roles of A20 in inflammatory, vascular and degenerative diseases of the central nervous system and explore future directions of research.

5.
Neuroscientist ; 20(4): 326-342, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24486596

RESUMEN

In recent years, the importance of the cellular redox status for neural stem cell (NSC) homeostasis has become increasingly clear. Similarly, the transcription factor and tumor suppressor p53 has been implicated in the regulation of cell metabolism, in antioxidant response, and in stem cell quiescence and fate commitment. Here, we explore the known and putative functions of p53 in antioxidant response and metabolic control and examine how reactive oxygen species, p53, and related cellular signaling may regulate NSC homeostasis, quiescence, and differentiation. We also discuss the role that PI3K-Akt-mTOR signaling plays in NSC biology and oxidative signaling and how p53 contributes to the regulation of this signaling cascade. Finally, we invite reflection on the several unanswered questions of the role that p53 plays in NSC biology and metabolism, anticipating future directions.

6.
J Biol Chem ; 284(28): 18816-23, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19443652

RESUMEN

Transcription is essential for neurite and axon outgrowth during development. Recent work points to the involvement of nuclear factor of activated T cells (NFAT) in the regulation of genes important for axon growth and guidance. However, NFAT has not been reported to directly control the transcription of axon outgrowth-related genes. To identify transcriptional targets, we performed an in silico promoter analysis and found a putative NFAT site within the GAP-43 promoter. Using in vitro and in vivo experiments, we demonstrated that NFAT-3 regulates GAP-43, but unexpectedly, does not promote but represses the expression of GAP-43 in neurons and in the developing brain. Specifically, in neuron-like PC-12 cells and in cultured cortical neurons, the overexpression of NFAT-3 represses GAP-43 activation mediated by neurotrophin signaling. Using chromatin immunoprecipitation assays, we also show that prior to neurotrophin activation, endogenous NFAT-3 occupies the GAP-43 promoter in PC-12 cells, in cultured neurons, and in the mouse brain. Finally, we observe that NFAT-3 is required to repress the physiological expression of GAP-43 and other pro-axon outgrowth genes in specific developmental windows in the mouse brain. Taken together, our data reveal an unexpected role for NFAT-3 as a direct transcriptional repressor of GAP-43 expression and suggest a more general role for NFAT-3 in the control of the neuronal outgrowth program.


Asunto(s)
Proteína GAP-43/metabolismo , Factores de Transcripción NFATC/fisiología , Neuronas/patología , Transcripción Genética , Animales , Sitios de Unión , Encéfalo/embriología , Encéfalo/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Núcleo Celular/metabolismo , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción NFATC/metabolismo , Neuronas/metabolismo , Células PC12 , Ratas , Ratas Sprague-Dawley , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA