Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Anim Genet ; 55(4): 540-558, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885945

RESUMEN

Unfavorable genetic correlations between milk production, fertility, and urea traits have been reported. However, knowledge of the genomic regions associated with these unfavorable correlations is limited. Here, we used the correlation scan method to identify and investigate the regions driving or antagonizing the genetic correlations between production vs. fertility, urea vs. fertility, and urea vs. production traits. Driving regions produce an estimate of correlation that is in the same direction as the global correlation. Antagonizing regions produce an estimate in the opposite direction of the global estimates. Our dataset comprised 6567, 4700, and 12,658 Holstein cattle with records of production traits (milk yield, fat yield, and protein yield), fertility (calving interval) and urea traits (milk urea nitrogen and blood urea nitrogen predicted using milk-mid-infrared spectroscopy), respectively. Several regions across the genome drive the correlations between production, fertility, and urea traits. Antagonizing regions were confined to certain parts of the genome and the genes within these regions were mostly involved in preventing metabolic dysregulation, liver reprogramming, metabolism remodeling, and lipid homeostasis. The driving regions were enriched for QTL related to puberty, milk, and health-related traits. Antagonizing regions were mostly related to muscle development, metabolic body weight, and milk traits. In conclusion, we have identified genomic regions of potential importance for dairy cattle breeding. Future studies could investigate the antagonizing regions as potential genomic regions to break the unfavorable correlations and improve milk production as well as fertility and urea traits.


Asunto(s)
Fertilidad , Leche , Sitios de Carácter Cuantitativo , Urea , Animales , Bovinos/genética , Fertilidad/genética , Urea/metabolismo , Leche/química , Leche/metabolismo , Femenino , Lactancia/genética , Australia , Fenotipo , Cruzamiento
2.
BMC Genomics ; 23(1): 393, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606689

RESUMEN

BACKGROUND: The rate of protein accretion and growth affect amino acid requirements in young animals. Differences in amino acid metabolism contribute to individual variations in growth rate. This study aimed at determining how amino acid needs may change with growth rates in broiler chickens. Experiment 1 consisted of testing amino acid choices in two chicken groups with extreme growth rates (the slowest -SG- or fastest -FG- growing birds in a flock). Essential (EAA) (methionine, lysine and threonine) or non-essential (NEAA) (alanine, aspartic acid and asparagine) amino acids were added to a standard control feed (13.2 MJ/kg; 21.6% crude protein). The chickens were offered simultaneous access to the control feed and a feed supplemented with one of the two amino acid mixes added at 73% above standard dietary levels. Experiment 2 consisted of the selection of the bottom 5 SG and top 5 FG chickens from a flock of 580 to study differences in amino acid metabolism using the proventriculus representing gut sensing mechanism. In this experiment, transcriptomic, proteomic, and genomic analyses were used to compare the two groups of chickens. RESULTS: SG preferred NEAA, while they rejected EAA supplemented feeds (P < 0.05). However, FG rejected NEAA (P < 0.05), and they were indifferent to EAA supplemented feed (P > 0.05). Transcriptomic and proteomic analyses identified 909 differentially expressed genes and 146 differentially abundant proteins associated with differences in growth rate (P < 0.05). The integration of gene expression and protein abundance patterns showed the downregulation of sensing and transport of alanine and glucose associated with increased alanine catabolism to pyruvate in SG chickens. CONCLUSION: Dietary preferences for NEAA in the SG group are associated with a potential cytosolic depletion of alanine following an upregulation of the catabolism into TCA cycle intermediates.


Asunto(s)
Alimentación Animal , Pollos , Alanina , Aminoácidos/metabolismo , Alimentación Animal/análisis , Animales , Apetito , Dieta , Glucosa , Proteómica
3.
BMC Genomics ; 23(1): 684, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36195838

RESUMEN

Although the genetic correlations between complex traits have been estimated for more than a century, only recently we have started to map and understand the precise localization of the genomic region(s) that underpin these correlations. Reproductive traits are often genetically correlated. Yet, we don't fully understand the complexities, synergism, or trade-offs between male and female fertility. In this study, we used reproductive traits in two cattle populations (Brahman; BB, Tropical Composite; TC) to develop a novel framework termed correlation scan (CS). This framework was used to identify local regions associated with the genetic correlations between male and female fertility traits. Animals were genotyped with bovine high-density single nucleotide polymorphisms (SNPs) chip assay. The data used consisted of ~1000 individual records measured through frequent ovarian scanning for age at first corpus luteum (AGECL) and a laboratory assay for serum levels of insulin growth hormone (IGF1 measured in bulls, IGF1b, or cows, IGF1c). The methodology developed herein used correlations of 500-SNP effects in a 100-SNPs sliding window in each chromosome to identify local genomic regions that either drive or antagonize the genetic correlations between traits. We used Fisher's Z-statistics through a permutation method to confirm which regions of the genome harboured significant correlations. About 30% of the total genomic regions were identified as driving and antagonizing genetic correlations between male and female fertility traits in the two populations. These regions confirmed the polygenic nature of the traits being studied and pointed to genes of interest. For BB, the most important chromosome in terms of local regions is often located on bovine chromosome (BTA) 14. However, the important regions are spread across few different BTA's in TC. Quantitative trait loci (QTLs) and functional enrichment analysis revealed many significant windows co-localized with known QTLs related to milk production and fertility traits, especially puberty. In general, the enriched reproductive QTLs driving the genetic correlations between male and female fertility are the same for both cattle populations, while the antagonizing regions were population specific. Moreover, most of the antagonizing regions were mapped to chromosome X. These results suggest regions of chromosome X for further investigation into the trade-offs between male and female fertility. We compared the CS with two other recently proposed methods that map local genomic correlations. Some genomic regions were significant across methods. Yet, many significant regions identified with the CS were overlooked by other methods.


Asunto(s)
Insulinas , Maduración Sexual , Animales , Bovinos/genética , Femenino , Fertilidad/genética , Estudio de Asociación del Genoma Completo/veterinaria , Genómica , Hormona del Crecimiento/genética , Insulinas/genética , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Maduración Sexual/genética
4.
Genet Sel Evol ; 52(1): 46, 2020 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-32787790

RESUMEN

BACKGROUND: Twenty-five phenotypes were measured as indicators of bull fertility (1099 Brahman and 1719 Tropical Composite bulls). Measurements included sperm morphology, scrotal circumference, and sperm chromatin phenotypes such as DNA fragmentation and protamine deficiency. We estimated the heritability of these phenotypes and carried out genome-wide association studies (GWAS) within breed, using the bovine high-density chip, to detect quantitative trait loci (QTL). RESULTS: Our analyses suggested that both sperm DNA fragmentation and sperm protamine deficiency are heritable (h2 from 0.10 to 0.22). To confirm these first estimates of heritability, further studies on sperm chromatin traits, with larger datasets are necessary. Our GWAS identified 12 QTL for bull fertility traits, based on at least five polymorphisms (P < 10-8) for each QTL. Five QTL were identified in Brahman and another seven in Tropical Composite bulls. Most of the significant polymorphisms detected in both breeds and nine of the 12 QTL were on chromosome X. The QTL were breed-specific, but for some traits, a closer inspection of the GWAS results revealed suggestive single nucleotide polymorphism (SNP) associations (P < 10-7) in both breeds. For example, the QTL for inhibin level in Braham could be relevant to Tropical Composites too (many polymorphisms reached P < 10-7 in the same region). The QTL for sperm midpiece morphological abnormalities on chromosome X (QTL peak at 4.92 Mb, P < 10-17) is an example of a breed-specific QTL, supported by 143 significant SNPs (P < 10-8) in Brahman, but absent in Tropical Composites. Our GWAS results add evidence to the mammalian specialization of the X chromosome, which during evolution has accumulated genes linked to spermatogenesis. Some of the polymorphisms on chromosome X were associated to more than one genetically correlated trait (correlations ranged from 0.33 to 0.51). Correlations and shared polymorphism associations support the hypothesis that these phenotypes share the same underlying cause, i.e. defective spermatogenesis. CONCLUSIONS: Genetic improvement for bull fertility is possible through genomic selection, which is likely more accurate if the QTL on chromosome X are considered in the predictions. Polymorphisms associated with male fertility accumulate on this chromosome in cattle, as in humans and mice, suggesting its specialization.


Asunto(s)
Bovinos/genética , Fertilidad/genética , Infertilidad Masculina/genética , Polimorfismo Genético , Cromosoma X/genética , Animales , Cruzamiento/métodos , Bovinos/fisiología , Evolución Molecular , Femenino , Masculino , Sitios de Carácter Cuantitativo , Selección Genética
5.
Trop Anim Health Prod ; 52(1): 415-423, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31385169

RESUMEN

Animal breeding programs have used molecular genetic tools as an auxiliary method to identify and select animals with superior genetic merit for milk production and milk quality traits as well as disease resistance. Genes of the major histocompatibility complex (MHC) are important molecular markers for disease resistance that could be applied for genetic selection. The aim of this study was to identify single nucleotide polymorphisms (SNPs) and haplotypes in DRB2, DRB3, DMA, and DMB genes in Murrah breed and to analyze the association between molecular markers and milk, fat, protein and mozzarella production, fat and protein percentage, and somatic cell count. Two hundred DNA samples from Murrah buffaloes were used. The target regions of candidate genes were amplified by polymerase chain reaction (PCR) followed by sequencing and identification of polymorphisms. Allele and genotype frequencies, as well as linkage disequilibrium between SNPs, were calculated. Genotypes were used in association analyses with milk production and quality traits. Except for the DMA gene, identified as monomorphic, the other genes presented several polymorphisms. The DMB, DRB2, and DRB3 genes presented two, six, and seven SNPs, respectively. Fifty-seven haplotype blocks were constructed from 15 SNPs identified, which was used in association analyses. All the studied traits had at least one associated haplotype. In conclusion, it is suggested that the haplotypes found herein can be associated with important traits related to milk production and quality.


Asunto(s)
Búfalos/genética , Haplotipos , Complejo Mayor de Histocompatibilidad/genética , Leche/química , Polimorfismo de Nucleótido Simple , Animales , Búfalos/metabolismo , Femenino
6.
J Proteome Res ; 17(5): 1852-1865, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29510626

RESUMEN

Puberty in cattle is regulated by an endocrine axis, which includes a complex milieu of neuropeptides in the hypothalamus and pituitary gland. The neuropeptidome of hypothalamic-pituitary gland tissue of pre- (PRE) and postpubertal (POST) Bos indicus-influenced heifers was characterized, followed by quantitative analysis of 51 fertility-related neuropeptides in these tissues. Comparison of peptide abundances with gene expression levels allowed assessment of post-transcriptional peptide processing. On the basis of classical cleavage, 124 mature neuropeptides from 35 precursor proteins were detected in hypothalamus and pituitary gland tissues of three PRE and three POST Brangus heifers. An additional 19 peptides (cerebellins, PEN peptides) previously reported as neuropeptides that did not follow classical cleavage were also identified. In the pre-pubertal hypothalamus, a greater diversity of neuropeptides (25.8%) was identified relative to post-pubertal heifers, while in the pituitary gland, 38.6% more neuropeptides were detected in the post-pubertal heifers. Neuro-tissues of PRE and POST heifers revealed abundance differences ( p < 0.05) in peptides from protein precursors involved in packaging and processing (e.g., the granin family and ProSAAS) or neuron stimulation (PENK, CART, POMC, cerebellins). On their own, the transcriptome data of the precursor genes could not predict the neuropeptide profile in the exact same tissues in several cases. This provides further evidence of the importance of differential processing of the neuropeptide precursors in the pituitary before and after puberty.


Asunto(s)
Hipotálamo , Neuropéptidos , Hipófisis , Maduración Sexual , Animales , Bovinos , Femenino , Hipotálamo/química , Neuropéptidos/análisis , Hipófisis/química , Procesamiento Proteico-Postraduccional , Procesamiento Postranscripcional del ARN , Transcriptoma
7.
BMC Genomics ; 16: 384, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25975716

RESUMEN

BACKGROUND: Previous genome-wide association analyses identified QTL regions in the X chromosome for percentage of normal sperm and scrotal circumference in Brahman and Tropical Composite cattle. These traits are important to be studied because they are indicators of male fertility and are correlated with female sexual precocity and reproductive longevity. The aim was to investigate candidate genes in these regions and to identify putative causative mutations that influence these traits. In addition, we tested the identified mutations for female fertility and growth traits. RESULTS: Using a combination of bioinformatics and molecular assay technology, twelve non-synonymous SNPs in eleven genes were genotyped in a cattle population. Three and nine SNPs explained more than 1% of the additive genetic variance for percentage of normal sperm and scrotal circumference, respectively. The SNPs that had a major influence in percentage of normal sperm were mapped to LOC100138021 and TAF7L genes; and in TEX11 and AR genes for scrotal circumference. One SNP in TEX11 was explained ~13% of the additive genetic variance for scrotal circumference at 12 months. The tested SNP were also associated with weight measurements, but not with female fertility traits. CONCLUSIONS: The strong association of SNPs located in X chromosome genes with male fertility traits validates the QTL. The implicated genes became good candidates to be used for genetic evaluation, without detrimentally influencing female fertility traits.


Asunto(s)
Bovinos/crecimiento & desarrollo , Bovinos/genética , Mutación , Fenotipo , Carne Roja , Cromosoma X/genética , Andrología , Animales , Bovinos/anatomía & histología , Bovinos/fisiología , Femenino , Fertilidad/genética , Técnicas de Genotipaje , Desequilibrio de Ligamiento , Masculino , Polimorfismo de Nucleótido Simple , Escroto/anatomía & histología , Espermatozoides/citología
8.
BMC Genomics ; 15: 232, 2014 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-24666776

RESUMEN

BACKGROUND: Fatty acids (FA) play a critical role in energy homeostasis and metabolic diseases; in the context of livestock species, their profile also impacts on meat quality for healthy human consumption. Molecular pathways controlling lipid metabolism are highly interconnected and are not fully understood. Elucidating these molecular processes will aid technological development towards improvement of pork meat quality and increased knowledge of FA metabolism, underpinning metabolic diseases in humans. RESULTS: The results from genome-wide association studies (GWAS) across 15 phenotypes were subjected to an Association Weight Matrix (AWM) approach to predict a network of 1,096 genes related to intramuscular FA composition in pigs. To identify the key regulators of FA metabolism, we focused on the minimal set of transcription factors (TF) that the explored the majority of the network topology. Pathway and network analyses pointed towards a trio of TF as key regulators of FA metabolism: NCOA2, FHL2 and EP300. Promoter sequence analyses confirmed that these TF have binding sites for some well-know regulators of lipid and carbohydrate metabolism. For the first time in a non-model species, some of the co-associations observed at the genetic level were validated through co-expression at the transcriptomic level based on real-time PCR of 40 genes in adipose tissue, and a further 55 genes in liver. In particular, liver expression of NCOA2 and EP300 differed between pig breeds (Iberian and Landrace) extreme in terms of fat deposition. Highly clustered co-expression networks in both liver and adipose tissues were observed. EP300 and NCOA2 showed centrality parameters above average in the both networks. Over all genes, co-expression analyses confirmed 28.9% of the AWM predicted gene-gene interactions in liver and 33.0% in adipose tissue. The magnitude of this validation varied across genes, with up to 60.8% of the connections of NCOA2 in adipose tissue being validated via co-expression. CONCLUSIONS: Our results recapitulate the known transcriptional regulation of FA metabolism, predict gene interactions that can be experimentally validated, and suggest that genetic variants mapped to EP300, FHL2, and NCOA2 modulate lipid metabolism and control energy homeostasis in pigs.


Asunto(s)
Ácidos Grasos/química , Redes Reguladoras de Genes/genética , Músculo Esquelético/metabolismo , Polimorfismo de Nucleótido Simple , ARN/metabolismo , Tejido Adiposo/metabolismo , Animales , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/metabolismo , Ácidos Grasos/metabolismo , Estudio de Asociación del Genoma Completo , Genotipo , Hígado/metabolismo , Masculino , Coactivador 2 del Receptor Nuclear/genética , Coactivador 2 del Receptor Nuclear/metabolismo , Fenotipo , Regiones Promotoras Genéticas , Porcinos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
BMC Genet ; 15: 6, 2014 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-24410912

RESUMEN

BACKGROUND: Previous genome-wide association studies have identified significant regions of the X chromosome associated with reproductive traits in two Bos indicus-influenced breeds: Brahman cattle and Tropical Composites. Two QTL regions on this chromosome were identified in both breeds as strongly associated with scrotal circumference measurements, a reproductive trait previously shown to be useful for selection of young bulls. Scrotal circumference is genetically correlated with early age at puberty in both male and female offspring. These QTL were located at positions 69-77 and 81-92 Mb respectively, large areas each to which a significant number of potential candidate genes were mapped. RESULTS: To further characterise these regions, a bioinformatic approach was undertaken to identify novel non-synonymous SNP within the QTL regions of interest in Brahman cattle. After SNP discovery, we used conventional molecular assay technologies to perform studies of two candidate genes in both breeds. Non-synonymous SNP mapped to Testis-expressed gene 11 (Tex11) were associated (P < 0.001) with scrotal circumference in both breeds, and associations with percentage of normal sperm cells were also observed (P < 0.05). Evidence for recent selection was found as Tex11 SNP form a haplotype segment of Bos taurus origin that is retained within Brahman and Tropical Composite cattle with greatest reproductive potential. CONCLUSIONS: Association of non-synonymous SNP presented here are a first step to functional genetic studies. Bovine species may serve as a model for studying the role of Tex11 in male fertility, warranting further in-depth molecular characterisation.


Asunto(s)
Sitios de Carácter Cuantitativo , Selección Genética , Testículo/anatomía & histología , Cromosoma X/genética , Animales , Bovinos , Biología Computacional , Estudios de Asociación Genética , Haplotipos , Mutación INDEL , Masculino , Tamaño de los Órganos , Polimorfismo de Nucleótido Simple , Receptores Androgénicos/genética , Análisis de Secuencia de ADN
10.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38545844

RESUMEN

Many animal species exhibit sex-limited traits, where certain phenotypes are exclusively expressed in one sex. Yet, the genomic regions that contribute to these sex-limited traits in males and females remain a subject of debate. Reproductive traits are ideal phenotypes to study sexual differences since they are mostly expressed in a sex-limited way. Therefore, this study aims to use local correlation analyses to identify genomic regions and biological pathways significantly associated with male and female sex-limited traits in two distinct cattle breeds (Brahman [BB] and Tropical Composite [TC]). We used the Correlation Scan method to perform local correlation analysis on 42 trait pairs consisting of six female and seven male reproductive traits recorded on ~1,000 animals for each sex in each breed. To pinpoint a specific region associated with these sex-limited reproductive traits, we investigated the genomic region(s) consistently identified as significant across the 42 trait pairs in each breed. The genes found in the identified regions were subjected to Quantitative Trait Loci (QTL) colocalization, QTL enrichment analyses, and functional analyses to gain biological insight into sexual differences. We found that the genomic regions associated with the sex-limited reproductive phenotypes are widely distributed across all the chromosomes. However, no single region across the genome was associated with all the 42 reproductive trait pairs in the two breeds. Nevertheless, we found a region on the X-chromosome to be most significant for 80% to 90% (BB: 33 and TC: 38) of the total 42 trait pairs. A considerable number of the genes in this region were regulatory genes. By considering only genomic regions that were significant for at least 50% of the 42 trait pairs, we observed more regions spread across the autosomes and the X-chromosome. All genomic regions identified were highly enriched for trait-specific QTL linked to sex-limited traits (percentage of normal sperm, metabolic weight, average daily gain, carcass weight, age at puberty, etc.). The gene list created from these identified regions was enriched for biological pathways that contribute to the observed differences between sexes. Our results demonstrate that genomic regions associated with male and female sex-limited reproductive traits are distributed across the genome. Yet, chromosome X seems to exert a relatively larger effect on the phenotypic variation observed between the sexes.


Many livestock species show sexual differences between males and females. However, we still do not fully understand the specific area of the genome responsible for these differences. This study used a novel method to investigate this research question in two distinct tropically adapted cattle. The study found that the drivers of sexual differences are widely distributed across the animal's genome, but the sex chromosome seems to play a large role. The genes within these regions are mostly protein-coding and regulatory genes. These genes were involved in biological processes that promote differences between males and females.


Asunto(s)
Sitios de Carácter Cuantitativo , Reproducción , Animales , Bovinos/genética , Bovinos/fisiología , Masculino , Femenino , Reproducción/genética , Fenotipo , Genoma , Genómica , Caracteres Sexuales
11.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38586898

RESUMEN

The pleomorphic adenoma gene1 (PLAG1) encodes a DNA-binding, C2H2 zinc-finger protein which acts as a transcription factor that regulates the expression of diverse genes across different organs and tissues; hence, the name pleomorphic. Rearrangements of the PLAG1 gene, and/or overexpression, are associated with benign tumors and cancers in a variety of tissues. This is best described for pleomorphic adenoma of the salivary glands in humans. The most notable expression of PLAG1 occurs during embryonic and fetal development, with lesser expression after birth. Evidence has accumulated of a role for PLAG1 protein in normal early embryonic development and placentation in mammals. PLAG1 protein influences the expression of the ike growth factor 2 (IGF2) gene and production of IGF2 protein. IGF2 is an important mitogen in ovarian follicles/oocytes, embryos, and fetuses. The PLAG1-IGF2 axis, therefore, provides one pathway whereby PLAG1 protein can influence embryonic survival and pregnancy. PLAG1 also influences over 1,000 other genes in embryos including those associated with ribosomal assembly and proteins. Brahman (Bos indicus) heifers homozygous for the PLAG1 variant, rs109815800 (G > T), show greater fertility than contemporary heifers with either one, or no copy, of the variant. Greater fertility in heifers homozygous for rs109815800 could be the result of early puberty and/or greater embryonic survival. The present review first looks at the broader roles of the PLAG1 gene and PLAG1 protein and then focuses on the emerging role of PLAG1/PLAG1 in embryonic development and pregnancy. A deeper understanding of factors which influence embryonic development is required for the next transformational increase in embryonic survival and successful pregnancy for both in vivo and in vitro derived embryos in cattle.


The pleomorphic adenoma gene1 (PLAG1) produces PLAG1 protein which, by binding to specific regions on DNA, influences the activity of other genes that regulate many body functions. One gene is insulin-like growth factor 2 (IGF2) which controls cell metabolism and growth. The PLAG1 gene is particularly active during embryonic and fetal growth, and through IGF2 determines stature later in life. IGF2 protein is also very important in early embryonic development. This review explores the hypothesis that PLAG1 is an important determinant of embryonic survival and the establishment of pregnancy in mammals.


Asunto(s)
Proteínas de Unión al ADN , Animales , Bovinos/genética , Femenino , Embarazo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Reproducción/genética , Desarrollo Embrionario/genética , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo
12.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38646666

RESUMEN

Asparagopsis taxiformis (Asparagopsis) has been shown to be highly efficacious at inhibiting the production of methane (CH4) in ruminants. To date, Asparagopsis has been primarily produced as a dietary supplement by freeze-drying to retain the volatile bioactive compound bromoform (CHBr3) in the product. Steeping of Asparagopsis bioactive compounds into a vegetable oil carrier (Asp-Oil) is an alternative method of stabilizing Asparagopsis as a ruminant feed additive. A dose-response experimental design used 3 Asp-Oil-canola oil blends, low, medium, and high Asp-Oil which provided 17, 34, and 51 mg Asparagopsis derived CHBr3/kg dry matter intake (DMI), respectively (in addition to a zero CHBr3 canola oil control), in a tempered-barley based feedlot finisher diet, fed for 59 d to 20 Angus heifers (five replicates per treatment). On four occasions, live weight was measured and CH4 emissions were quantified in respiration chambers, and blood, rumen fluid, and fecal samples were collected. At the end of the experiment, all animals were slaughtered, with carcasses graded, and samples of meat and edible offal collected for testing of consumer sensory qualities and residues of CHBr3, bromide, and iodide. All Asp-Oil treatments reduced CH4 yield (g CH4/kg DMI, P = 0.008) from control levels, with the low, medium, and high Asp-Oil achieving 64%, 98%, and 99% reduction, respectively. Dissolved hydrogen increased linearly with increasing Asp-Oil inclusion, by more than 17-fold in the high Asp-Oil group (P = 0.017). There was no effect of Asp-Oil treatment on rumen temperature, pH, reduction potential, volatile fatty acid and ammonia production, rumen pathology, and histopathology (P > 0.10). There were no differences in animal production and carcass parameters (P > 0.10). There was no detectable CHBr3 in feces or any carcass samples (P > 0.10), and iodide and bromide residues in kidneys were at levels unlikely to lead to consumers exceeding recommended maximum intakes. Overall, Asp-Oil was found to be safe for animals and consumers of meat, and effective at reducing CH4 emissions and yield by up to 99% within the range of inclusion levels tested.


Red seaweed, Asparagopsis taxiformis (Asparagopsis), has been shown to be highly effective at inhibiting the production of methane (CH4) in ruminants. An alternative to feeding whole, freeze-dried Asparagopsis is steeping the biomass in vegetable oil to stabilize the bioactive compounds (Asp-Oil) and feeding Asp-Oil to ruminants as a component of their dietary intake. This experiment measured the CH4 reduction potential and safety of Asp-Oil in a trial with 20 Angus heifers, fed iso-fat feedlot diets containing one of the three levels of Asp-Oil, or a control oil. Compared to the control, bromoform inclusion levels of 17, 34, and 51 mg/kg of dry matter (DM; low, medium, high) reduced CH4 yield (g CH4/kg DM intake) by 64%, 98%, and 99%, respectively. There were no effects on animal production or carcass characteristics. There were no impacts on animal health, welfare, or rumen function. Carcasses were safe for human consumption, and there was no bromoform detected in any carcass samples. Overall, Asp-Oil was found to effectively reduce CH4 emissions and is safe for animals and consumers of meat and edible offal.


Asunto(s)
Alimentación Animal , Dieta , Metano , Aceite de Brassica napus , Animales , Bovinos , Alimentación Animal/análisis , Metano/metabolismo , Dieta/veterinaria , Aceite de Brassica napus/química , Aceite de Brassica napus/farmacología , Femenino , Suplementos Dietéticos/análisis , Rumen/metabolismo , Rumen/efectos de los fármacos , Aceites de Plantas/farmacología , Aceites de Plantas/química
13.
BMC Genomics ; 14: 798, 2013 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-24246134

RESUMEN

BACKGROUND: Systems biology enables the identification of gene networks that modulate complex traits. Comprehensive metabolomic analyses provide innovative phenotypes that are intermediate between the initiator of genetic variability, the genome, and raw phenotypes that are influenced by a large number of environmental effects. The present study combines two concepts, systems biology and metabolic analyses, in an approach without prior functional hypothesis in order to dissect genes and molecular pathways that modulate differential growth at the onset of puberty in male cattle. Furthermore, this integrative strategy was applied to specifically explore distinctive gene interactions of non-SMC condensin I complex, subunit G (NCAPG) and myostatin (GDF8), known modulators of pre- and postnatal growth that are only partially understood for their molecular pathways affecting differential body weight. RESULTS: Our study successfully established gene networks and interacting partners affecting growth at the onset of puberty in cattle. We demonstrated the biological relevance of the created networks by comparison to randomly created networks. Our data showed that GnRH (Gonadotropin-releasing hormone) signaling is associated with divergent growth at the onset of puberty and revealed two highly connected hubs, BTC and DGKH, within the network. Both genes are known to directly interact with the GnRH signaling pathway. Furthermore, a gene interaction network for NCAPG containing 14 densely connected genes revealed novel information concerning the functional role of NCAPG in divergent growth. CONCLUSIONS: Merging both concepts, systems biology and metabolomic analyses, successfully yielded new insights into gene networks and interacting partners affecting growth at the onset of puberty in cattle. Genetic modulation in GnRH signaling was identified as key modifier of differential cattle growth at the onset of puberty. In addition, the benefit of our innovative concept without prior functional hypothesis was demonstrated by data suggesting that NCAPG might contribute to vascular smooth muscle contraction by indirect effects on the NO pathway via modulation of arginine metabolism. Our study shows for the first time in cattle that integration of genetic, physiological and metabolomics data in a systems biology approach will enable (or contribute to) an improved understanding of metabolic and gene networks and genotype-phenotype relationships.


Asunto(s)
Adenosina Trifosfatasas/genética , Proteínas de Unión al ADN/genética , Hormona Liberadora de Gonadotropina/genética , Complejos Multiproteicos/genética , Miostatina/genética , Maduración Sexual/genética , Biología de Sistemas , Animales , Peso Corporal/genética , Bovinos , Epistasis Genética , Perfilación de la Expresión Génica , Variación Genética , Masculino , Redes y Vías Metabólicas/genética , Metabolómica , Miostatina/biosíntesis , Fenotipo , Polimorfismo de Nucleótido Simple/genética
14.
Anim Genet ; 44(1): 91-5, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22554198

RESUMEN

Insulin-like growth factor I (somatomedin C) (IGF1) influences gonadotrophin-releasing hormone (GnRH) neurons during puberty, and GnRH release guides pubertal development. Therefore, genes of the IGF1 pathway are biological candidates for the identification of single-nucleotide polymorphisms (SNPs) affecting age of puberty. In a genome-wide association study, genotyped heifers were Tropical Composite (TCOMP, n = 866) or Brahman (BRAH, n = 843), with observation of age at first corpus luteum defining puberty. We examined SNPs in or near genes of the IGF1 pathway and report seven genes associated with age at puberty in cattle: IGF1R, IGFBP2, IGFBP4, PERK (HUGO symbol EIF2AK3), PIK3R1, GSK3B and IRS1. SNPs in the IGF1 receptor (IGF1R) showed the most promising associations: two SNPs were associated with puberty in TCOMP (P < 0.05) and one in BRAH (P = 0.00009). This last SNP explained 2% of the genetic variation (R(2) = 2.04%) for age of puberty in BRAH. Hence, IGF1R was examined further. Additional SNPs were genotyped, and haplotypes were analysed. To test more SNPs in this gene, four new SNPs from dbSNP were selected and genotyped. Single SNP and haploytpe analysis revealed associations with age of puberty in both breeds. There were two haplotypes of 12 IGF1R SNPs associated with puberty in BRAH (P < 0.05) and one in TCOMP (P < 0.05). One haplotype of two SNPs was associated (P < 0.01) with puberty in BRAH, but not in TCOMP. In conclusion, the IGF1 pathway appeared more relevant for age of puberty in Brahman cattle, and IGF1R showed higher significance when compared with other genes from the pathway.


Asunto(s)
Bovinos/genética , Factor I del Crecimiento Similar a la Insulina/genética , Maduración Sexual , Factores de Edad , Animales , Femenino , Variación Genética , Estudio de Asociación del Genoma Completo/veterinaria , Genotipo , Polimorfismo de Nucleótido Simple , Especificidad de la Especie
15.
Proc Natl Acad Sci U S A ; 107(31): 13642-7, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20643938

RESUMEN

We describe a systems biology approach for the genetic dissection of complex traits based on applying gene network theory to the results from genome-wide associations. The associations of single-nucleotide polymorphisms (SNP) that were individually associated with a primary phenotype of interest, age at puberty in our study, were explored across 22 related traits. Genomic regions were surveyed for genes harboring the selected SNP. As a result, an association weight matrix (AWM) was constructed with as many rows as genes and as many columns as traits. Each {i, j} cell value in the AWM corresponds to the z-score normalized additive effect of the ith gene (via its neighboring SNP) on the jth trait. Columnwise, the AWM recovered the genetic correlations estimated via pedigree-based restricted maximum-likelihood methods. Rowwise, a combination of hierarchical clustering, gene network, and pathway analyses identified genetic drivers that would have been missed by standard genome-wide association studies. Finally, the promoter regions of the AWM-predicted targets of three key transcription factors (TFs), estrogen-related receptor gamma (ESRRG), Pal3 motif, bound by a PPAR-gamma homodimer, IR3 sites (PPARG), and Prophet of Pit 1, PROP paired-like homeobox 1 (PROP1), were surveyed to identify binding sites corresponding to those TFs. Applied to our case, the AWM results recapitulate the known biology of puberty, captured experimentally validated binding sites, and identified candidate genes and gene-gene interactions for further investigation.


Asunto(s)
Envejecimiento , Bovinos/genética , Polimorfismo de Nucleótido Simple , Animales , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Biología de Sistemas
16.
PLoS One ; 18(1): e0279398, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36701372

RESUMEN

Worldwide, most beef breeding herds are naturally mated. As such, the ability to identify and select fertile bulls is critically important for both productivity and genetic improvement. Here, we collected ten fertility-related phenotypes for 6,063 bulls from six tropically adapted breeds. Phenotypes were comprised of four bull conformation traits and six traits directly related to the quality of the bull's semen. We also generated high-density DNA genotypes for all the animals. In total, 680,758 single nucleotide polymorphism (SNP) genotypes were analyzed. The genomic correlation of the same trait observed in different breeds was positive for scrotal circumference and sheath score on most breed comparisons, but close to zero for the percentage of normal sperm, suggesting a divergent genetic background for this trait. We confirmed the importance of a breed being present in the reference population to the generation of accurate genomic estimated breeding values (GEBV) in an across-breed validation scenario. Average GEBV accuracies varied from 0.19 to 0.44 when the breed was not included in the reference population. The range improved to 0.28 to 0.59 when the breed was in the reference population. Variants associated with the gene HDAC4, six genes from the spermatogenesis-associated (SPATA) family of proteins, and 29 transcription factors were identified as candidate genes. Collectively these results enable very early in-life selection for bull fertility traits, supporting genetic improvement strategies currently taking place within tropical beef production systems. This study also improves our understanding of the molecular basis of male fertility in mammals.


Asunto(s)
Genoma , Semen , Masculino , Bovinos/genética , Animales , Genoma/genética , Genómica/métodos , Genotipo , Fenotipo , Fertilidad/genética , Polimorfismo de Nucleótido Simple , Mamíferos/genética
17.
Biol Reprod ; 87(3): 58, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22811567

RESUMEN

Bull fertility is an important target for genetic improvement, and early prediction using genetic markers is therefore a goal for livestock breeding. We performed genome-wide association studies to identify genes associated with fertility traits measured in young bulls. Data from 1118 Brahman bulls were collected for six traits: blood hormone levels of inhibin (IN) at 4 mo, luteinizing hormone (LH) following a gonadotropin-releasing hormone challenge at 4 mo, and insulin-like growth factor 1 (IGF1) at 6 mo, scrotal circumference (SC) at 12 mo, ability to produce sperm (Sperm) at 18 mo, and percentage of normal sperm (PNS) at 24 mo. All the bulls were genotyped with the BovineSNP50 chip. Sires and dams of the bull population (n = 304) were genotyped with the high-density chip (∼800 000 polymorphisms) to allow for imputation, thereby contributing detail on genome regions of interest. Polymorphism associations were discovered for all traits, except for Sperm. Chromosome 2 harbored polymorphisms associated with IN. For LH, associated polymorphisms were located in five different chromosomes. A region of chromosome 14 contained polymorphisms associated with IGF1 and SC. Regions of the X chromosome showed associations with SC and PNS. Associated polymorphisms yielded candidate genes in chromosomes 2, 14, and X. These findings will contribute to the development of genetic markers to help select cattle with improved fertility and will lead to better annotation of gene function in the context of reproductive biology.


Asunto(s)
Bovinos , Crecimiento y Desarrollo/genética , Inhibinas/sangre , Factor I del Crecimiento Similar a la Insulina/análisis , Hormona Luteinizante/sangre , Análisis de Semen , Testículo/crecimiento & desarrollo , Animales , Bovinos/sangre , Bovinos/genética , Bovinos/crecimiento & desarrollo , Bovinos/fisiología , Estudios de Asociación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Inhibinas/análisis , Inhibinas/genética , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Hormona Luteinizante/análisis , Hormona Luteinizante/genética , Masculino , Concentración Osmolar , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo/fisiología , Análisis de Semen/veterinaria , Testículo/metabolismo
18.
J Anim Sci ; 100(9)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35881500

RESUMEN

The aim of this study was to evaluate the genotype x environment interaction (GxE) for scrotal circumference (SC) measured at different ages using pedigree-based (A-1) and pedigree and genomic-based (H-1) relationship matrices. Data from 1,515 Brahman bulls, from the Cooperative Research Centre for Beef Genetic Technologies (Beef CRC) experimental dataset, were used in this study. SC was adjusted to age and body weight measured at 6 mo (SC6), 12 mo (SC12), 18 mo (SC18), and 24 mo of age (SC24). Body weight (BW) measured at 6 mo (BW6), 12 mo (BW12), 18 mo (BW18), and 24 mo of age (BW24) was used as criteria to describe the environment for SC in each age. All the animals measured were genotyped using medium-density SNP chips ("50k" or "70k" SNP) and their genotype were imputed using a reference panel with 729,068 SNP. The environment gradient (EG) was obtained by standardizing the solutions of the contemporary groups obtained by Animal Model with BW as the dependent variable. Then, the reaction norms (RN) were determined through a Random Regression Model. The breeding values (EBV) were estimated using either A-1 or H-1. The rank correlation was obtained using Spearman's correlation among the EBV estimated for the traits in analysis. For SC6 and SC24, higher estimates of heritability (h²) were obtained using A-1, when compared with those observed with H-1. In those ages, the improvement of the environment decreases the h² coefficient. On the other hand, the h² for SC12 and SC18 increased as the environment became more favorable, regardless of the matrix used. The RN for SC6 and SC24 estimated using A-1 and H-1 showed a decrease of variance from the worst to the best environment, an indication of existence of GxE. On the other hand, for SC12 and SC18, there were no significant differences between the EBV estimated in the lower and in the higher environments, regardless of the kinship matrix used, suggesting absence of GxE on those ages. Spearman's correlation among EBV estimated using A-1 and H-1 in different EG was practically equal to unity for all traits evaluated. In our study, there was weak evidence of GxE effect on SC in ages suitable for selection for sexual precocity. So, the absence of GxE at 12 and 18 mo means that these ages are advantageous for measuring SC to selection for sexual precocity. The advantage is that no changes in classification were observed when the sires were evaluated in different environments.


Beef production systems rely on efficient cow-calf operations, that is, farms where the cow herd has a high level of fertility and pregnancies are common. Bull fertility also plays an important role in terms of pregnancy rates. To increase herd fertility, cattle breeders and genetic selection programs use some indicator traits that are related to fertility. A common indicator trait used is scrotal circumference (SC), which like most reproduction traits are influenced by the animal's genetics and its environment. For some traits, when the environment has a large effect and it interacts with the genetics of the animals, selection might be less successful. Therefore, it is important to investigate genotype by environment interactions and their effect on reproduction traits used for selection. In this study, SC was measured at four different ages in Brahman cattle. We found weak evidence of genotype by environment effect on SC measured at 12 and 18 mo. In short, SC measured at these ages can be a good indicator of sexual precocity. No changes in sire rankings were observed when SC was measured at those ages, meaning that selecting the best sire is more straightforward than if the environment was playing a bigger role.


Asunto(s)
Interacción Gen-Ambiente , Modelos Genéticos , Animales , Peso Corporal/genética , Bovinos/genética , Genotipo , Masculino , Fenotipo , Escroto
19.
J Anim Sci ; 100(12)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36239447

RESUMEN

Biologically informed single nucleotide polymorphisms (SNPs) impact genomic prediction accuracy of the target traits. Our previous genomics, proteomics, and transcriptomics work identified candidate genes related to puberty and fertility in Brahman heifers. We aimed to test this biological information for capturing heritability and predicting heifer fertility traits in another breed i.e., Tropical Composite. The SNP from the identified genes including 10 kilobases (kb) region on either side were selected as biologically informed SNP set. The SNP from the rest of the Bos taurus genes including 10-kb region on either side were selected as biologically uninformed SNP set. Bovine high-density (HD) complete SNP set (628,323 SNP) was used as a control. Two populations-Tropical Composites (N = 1331) and Brahman (N = 2310)-had records for three traits: pregnancy after first mating season (PREG1, binary), first conception score (FCS, score 1 to 3), and rebreeding score (REB, score 1 to 3.5). Using the best linear unbiased prediction method, effectiveness of each SNP set to predict the traits was tested in two scenarios: a 5-fold cross-validation within Tropical Composites using biological information from Brahman studies, and application of prediction equations from one breed to the other. The accuracy of prediction was calculated as the correlation between genomic estimated breeding values and adjusted phenotypes. Results show that biologically informed SNP set estimated heritabilities not significantly better than the control HD complete SNP set in Tropical Composites; however, it captured all the observed genetic variance in PREG1 and FCS when modeled together with the biologically uninformed SNP set. In 5-fold cross-validation within Tropical Composites, the biologically informed SNP set performed marginally better (statistically insignificant) in terms of prediction accuracies (PREG1: 0.20, FCS: 0.13, and REB: 0.12) as compared to HD complete SNP set (PREG1: 0.17, FCS: 0.10, and REB: 0.11), and biologically uninformed SNP set (PREG1: 0.16, FCS: 0.10, and REB: 0.11). Across-breed use of prediction equations still remained a challenge: accuracies by all SNP sets dropped to around zero for all traits. The performance of biologically informed SNP was not significantly better than other sets in Tropical Composites. However, results indicate that biological information obtained from Brahman was successful to predict the fertility traits in Tropical Composite population.


Prior biological information can be helpful in the genomic prediction of the traits. Previous multi-omics studies by our group identified genes relevant to puberty and fertility in Brahman cattle, a beef breed in northern Australia. We used this biological information in the genomic prediction of three heifer fertility traits, measured in another beef cattle breed: Tropical Composites. The three traits were: pregnancy status after the first mating season (PREG1), first conception score (FCS), and rebreeding score (REB). To test if prior biological information could capture genetic variation in the traits and improve genomic predictions, we compared the results obtained using three subsets of genetic information (i.e., subsets of DNA variants). The first subset contained only variants deemed biologically relevant (as per previous multi-omics studies). The second subset contained only variants considered biologically irrelevant. The third subset had all the variants contained in the commercial DNA assay known as the bovine high-density chip, intended as a practical control. The results indicate that multi-omics data was informative across breed scenario and can be useful in informing genomic predictions of traits of interest.


Asunto(s)
Genoma , Multiómica , Embarazo , Bovinos/genética , Animales , Femenino , Genotipo , Genómica , Fenotipo , Fertilidad/genética , Polimorfismo de Nucleótido Simple
20.
Front Genet ; 12: 610116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995471

RESUMEN

Spermatogenesis relies on complex molecular mechanisms, essential for the genesis and differentiation of the male gamete. Germ cell differentiation starts at the testicular parenchyma and finishes in the epididymis, which has three main regions: head, body, and tail. RNA-sequencing data of the testicular parenchyma (TP), head epididymis (HE), and tail epididymis (TE) from four bulls (three biopsies per bull: 12 samples) were subjected to differential expression analyses, functional enrichment analyses, and co-expression analyses. The aim was to investigate the co-expression and infer possible regulatory roles for transcripts involved in the spermatogenesis of Bos indicus bulls. Across the three pairwise comparisons, 3,826 differentially expressed (DE) transcripts were identified, of which 384 are small RNAs. Functional enrichment analysis pointed to gene ontology (GO) terms related to ion channel activity, detoxification of copper, neuroactive receptors, and spermatogenesis. Using the regulatory impact factor (RIF) algorithm, we detected 70 DE small RNAs likely to regulate the DE transcripts considering all pairwise comparisons among tissues. The pattern of small RNA co-expression suggested that these elements are involved in spermatogenesis regulation. The 3,826 DE transcripts (mRNAs and small RNAs) were further subjected to co-expression analyses using the partial correlation and information theory (PCIT) algorithm for network prediction. Significant correlations underpinned the co-expression network, which had 2,216 transcripts connected by 158,807 predicted interactions. The larger network cluster was enriched for male gamete generation and had 15 miRNAs with significant RIF. The miRNA bta-mir-2886 showed the highest number of connections (601) and was predicted to down-regulate ELOVL3, FEZF2, and HOXA13 (negative co-expression correlations and confirmed with TargetScan). In short, we suggest that bta-mir-2886 and other small RNAs might modulate gene expression in the testis and epididymis, in Bos indicus cattle.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA