Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 29(14): 1836-1841, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31104993

RESUMEN

Genetic activation of the bacterial two-component signal transduction system, CpxRA, abolishes the virulence of a number of pathogens in human and murine infection models. Recently, 2,3,4,9-tetrahydro-1H-carbazol-1-amines were shown to activate the CpxRA system by inhibiting the phosphatase activity of CpxA. Herein we report the initial structure-activity relationships of this scaffold by focusing on three approaches 1) A-ring substitution, 2) B-ring deconstruction to provide N-arylated amino acid derivatives, and 3) C-ring elimination to give 2-ethylamino substituted indoles. These studies demonstrate that the A-ring is amenable to functionalization and provides a promising avenue for continued optimization of this chemotype. Further investigations revealed that the C-ring is not necessary for activity, although it likely provides conformational constraint that is beneficial to potency, and that the (R) stereochemistry is required at the primary amine. Simplification of the scaffold through deconstruction of the B-ring led to inactive compounds, highlighting the importance of the indole core. A new lead compound 26 was identified, which manifests a ∼30-fold improvement in CpxA phosphatase inhibition over the initial hit. Comparison of amino and des-amino derivatives in bacterial strains differing in membrane permeability and efflux capabilities demonstrate that the amine is required not only for target engagement but also for permeation and accumulation in Escherichia coli.


Asunto(s)
Carbazoles/uso terapéutico , Animales , Carbazoles/farmacología , Humanos , Ratones , Relación Estructura-Actividad
2.
PLoS Negl Trop Dis ; 16(12): e0011009, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36534698

RESUMEN

BACKGROUND: In yaws-endemic areas, two-thirds of exudative cutaneous ulcers (CU) are associated with Treponema pallidum subsp. pertenue (TP) and Haemophilus ducreyi (HD); one-third are classified as idiopathic ulcers (IU). A yaws eradication campaign on Lihir Island in Papua New Guinea utilizing mass drug administration (MDA) of azithromycin initially reduced but failed to eradicate yaws; IU rates remained constant throughout the study. Using 16S rRNA gene sequencing, we previously determined that Streptococcus pyogenes was associated with some cases of IU. Here, we applied shotgun metagenomics to the same samples we analyzed previously by 16S rRNA sequencing to verify this result, identify additional IU-associated microorganisms, and determine why S. pyogenes-associated IU might have persisted after MDA of azithromycin. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced DNA extracted from 244 CU specimens separated into four groups based upon microorganism-specific PCR results (HD+, TP+, TP+HD+, and TP-HD- or IU). S. pyogenes was enriched in IU (24.71% relative abundance [RA]) specimens compared to other ulcer sub-groups, confirming our prior results. We bioinformatically identified the emm (M protein gene) types found in the S. pyogenes IU specimens and found matches to emm156 and emm166. Only ~39% of IU specimens contained detectable S. pyogenes, suggesting that additional organisms could be associated with IU. In the sub-set of S. pyogenes-negative IU specimens, Criibacterium bergeronii, a member of the Peptostreptococcaceae, and Fusobacterium necrophorum (7.07% versus 0.00% RA and 2.18% versus 0.00% RA, respectively), were enriched compared to the S. pyogenes-positive sub-set. Although a broad range of viruses were detected in the CU specimens, none were specifically associated with IU. CONCLUSIONS/SIGNIFICANCE: Our observations confirm the association of S. pyogenes with IU in yaws-endemic areas, and suggest that additional anaerobic bacteria, but not other microorganisms, may be associated with this syndrome. Our results should aid in the design of diagnostic tests and selective therapies for CU.


Asunto(s)
Haemophilus ducreyi , Úlcera Cutánea , Buba , Humanos , Niño , Azitromicina/uso terapéutico , Úlcera/tratamiento farmacológico , Streptococcus pyogenes/genética , Buba/diagnóstico , Bacterias Anaerobias/genética , Anaerobiosis , ARN Ribosómico 16S/genética , Treponema pallidum/genética , Úlcera Cutánea/microbiología , Haemophilus ducreyi/genética
3.
mBio ; 12(1)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436440

RESUMEN

Exudative cutaneous ulcers (CU) in yaws-endemic areas are associated with Treponema pallidum subsp. pertenue (TP) and Haemophilus ducreyi (HD), but one-third of CU cases are idiopathic (IU). Using mass drug administration (MDA) of azithromycin, a yaws eradication campaign on Lihir Island in Papua New Guinea reduced but failed to eradicate yaws; IU rates remained constant throughout the campaign. To identify potential etiologies of IU, we obtained swabs of CU lesions (n = 279) and of the skin of asymptomatic controls (AC; n = 233) from the Lihir Island cohort and characterized their microbiomes using a metagenomics approach. CU bacterial communities were less diverse than those of the AC. Using real-time multiplex PCR with pathogen-specific primers, we separated CU specimens into HD-positive (HD+), TP+, HD+TP+, and IU groups. Each CU subgroup formed a distinct bacterial community, defined by the species detected and/or the relative abundances of species within each group. Streptococcus pyogenes was the most abundant organism in IU (22.65%) and was enriched in IU compared to other ulcer groups. Follow-up samples (n = 31) were obtained from nonhealed ulcers; the average relative abundance of S. pyogenes was 30.11% in not improved ulcers and 0.88% in improved ulcers, suggesting that S. pyogenes in the not improved ulcers may be azithromycin resistant. Catonella morbi was enriched in IU that lacked S. pyogenes As some S. pyogenes and TP strains are macrolide resistant, penicillin may be the drug of choice for CU azithromycin treatment failures. Our study will aid in the design of diagnostic tests and selective therapies for CU.IMPORTANCE Cutaneous ulcers (CU) affect approximately 100,000 children in the tropics each year. While two-thirds of CU are caused by Treponema pallidum subspecies pertenue and Haemophilus ducreyi, the cause(s) of the remaining one-third is unknown. Given the failure of mass drug administration of azithromycin to eradicate CU, the World Health Organization recently proposed an integrated disease management strategy to control CU. Success of this strategy requires determining the unknown cause(s) of CU. By using 16S rRNA gene sequencing of swabs obtained from CU and the skin of asymptomatic children, we identified another possible cause of skin ulcers, Streptococcus pyogenes Although S. pyogenes is known to cause impetigo and cellulitis, this is the first report implicating the organism as a causal agent of CU. Inclusion of S. pyogenes into the integrated disease management plan will improve diagnostic testing and treatment of this painful and debilitating disease of children and strengthen elimination efforts.


Asunto(s)
Úlcera Cutánea/complicaciones , Úlcera Cutánea/microbiología , Streptococcus pyogenes/aislamiento & purificación , Buba/complicaciones , Buba/microbiología , Antibacterianos/uso terapéutico , Azitromicina/uso terapéutico , Niño , Clostridiales , Haemophilus ducreyi , Humanos , Metagenómica , Microbiota , Papúa Nueva Guinea/epidemiología , Reacción en Cadena de la Polimerasa , Estudios Prospectivos , ARN Ribosómico 16S , Úlcera Cutánea/tratamiento farmacológico , Úlcera Cutánea/epidemiología , Streptococcus pyogenes/genética , Treponema , Úlcera , Buba/tratamiento farmacológico , Buba/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA