Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
PLoS Genet ; 17(9): e1009714, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34473702

RESUMEN

The spatio-temporal program of genome replication across eukaryotes is thought to be driven both by the uneven loading of pre-replication complexes (pre-RCs) across the genome at the onset of S-phase, and by differences in the timing of activation of these complexes during S phase. To determine the degree to which distribution of pre-RC loading alone could account for chromosomal replication patterns, we mapped the binding sites of the Mcm2-7 helicase complex (MCM) in budding yeast, fission yeast, mouse and humans. We observed similar individual MCM double-hexamer (DH) footprints across the species, but notable differences in their distribution: Footprints in budding yeast were more sharply focused compared to the other three organisms, consistent with the relative sequence specificity of replication origins in S. cerevisiae. Nonetheless, with some clear exceptions, most notably the inactive X-chromosome, much of the fluctuation in replication timing along the chromosomes in all four organisms reflected uneven chromosomal distribution of pre-replication complexes.


Asunto(s)
Cromosomas Fúngicos , Cromosomas Humanos , Replicación del ADN/genética , Genoma Fúngico , Proteínas de Mantenimiento de Minicromosoma/genética , Saccharomyces cerevisiae/genética , Humanos
2.
PLoS Genet ; 15(5): e1008138, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31083663

RESUMEN

Repetitive DNA sequences within eukaryotic heterochromatin are poorly transcribed and replicate late in S-phase. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA arrays (rDNA). Despite the widespread association between transcription and replication timing, it remains unclear how transcription might impinge on replication, or vice versa. Here we show that, when silencing of an RNA polymerase II (RNA Pol II)-transcribed non-coding RNA at the rDNA is disrupted by SIR2 deletion, RNA polymerase pushes and thereby relocalizes replicative Mcm2-7 helicases away from their loading sites to an adjacent region with low nucleosome occupancy, and this relocalization is associated with increased rDNA origin efficiency. Our results suggest a model in which two of the major defining features of heterochromatin, transcriptional silencing and late replication, are mechanistically linked through suppression of polymerase-mediated displacement of replication initiation complexes.


Asunto(s)
Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/genética , Sirtuina 2/metabolismo , Proteínas de Ciclo Celular/genética , Replicación del ADN/genética , Replicación del ADN/fisiología , ADN Ribosómico/genética , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica/genética , Silenciador del Gen , Proteínas de Mantenimiento de Minicromosoma/genética , ARN Polimerasa I/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transcripción Genética
3.
Proc Natl Acad Sci U S A ; 114(3): 552-557, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-28049846

RESUMEN

Replication gaps that persist into mitosis likely represent important threats to genome stability, but experimental identification of these gaps has proved challenging. We have developed a technique that allows us to explore the dynamics by which genome replication is completed before mitosis. Using this approach, we demonstrate that excessive allocation of replication resources to origins within repetitive regions, induced by SIR2 deletion, leads to persistent replication gaps and genome instability. Conversely, the weakening of replication origins in repetitive regions suppresses these gaps. Given known age- and cancer-associated changes in chromatin accessibility at repetitive sequences, we suggest that replication gaps resulting from misallocation of replication resources underlie age- and disease-associated genome instability.


Asunto(s)
Replicación del ADN , Inestabilidad Genómica , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2/metabolismo , Cromosomas Fúngicos/genética , ADN de Hongos/biosíntesis , ADN de Hongos/genética , ADN Ribosómico/biosíntesis , ADN Ribosómico/genética , Eliminación de Gen , Genoma Fúngico , Humanos , Modelos Biológicos , Secuencias Repetitivas de Ácidos Nucleicos , Origen de Réplica , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/deficiencia , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2/deficiencia , Sirtuina 2/genética
4.
Proc Natl Acad Sci U S A ; 114(7): 1619-1624, 2017 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-28143937

RESUMEN

Rett syndrome (RS) is a debilitating neurological disorder affecting mostly girls with heterozygous mutations in the gene encoding the methyl-CpG-binding protein MeCP2 on the X chromosome. Because restoration of MeCP2 expression in a mouse model reverses neurologic deficits in adult animals, reactivation of the wild-type copy of MeCP2 on the inactive X chromosome (Xi) presents a therapeutic opportunity in RS. To identify genes involved in MeCP2 silencing, we screened a library of 60,000 shRNAs using a cell line with a MeCP2 reporter on the Xi and found 30 genes clustered in seven functional groups. More than half encoded proteins with known enzymatic activity, and six were members of the bone morphogenetic protein (BMP)/TGF-ß pathway. shRNAs directed against each of these six genes down-regulated X-inactive specific transcript (XIST), a key player in X-chromosome inactivation that encodes an RNA that coats the silent X chromosome, and modulation of regulators of this pathway both in cell culture and in mice demonstrated robust regulation of XIST. Moreover, we show that Rnf12, an X-encoded ubiquitin ligase important for initiation of X-chromosome inactivation and XIST transcription in ES cells, also plays a role in maintenance of the inactive state through regulation of BMP/TGF-ß signaling. Our results identify pharmacologically suitable targets for reactivation of MeCP2 on the Xi and a genetic circuitry that maintains XIST expression and X-chromosome inactivation in differentiated cells.


Asunto(s)
Proteína Morfogenética Ósea 2/genética , Proteína 2 de Unión a Metil-CpG/genética , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta/genética , Inactivación del Cromosoma X , Animales , Línea Celular , Femenino , Perfilación de la Expresión Génica , Biblioteca de Genes , Humanos , Ratones , ARN Interferente Pequeño/genética , Síndrome de Rett/genética , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas/genética
5.
PLoS Genet ; 9(3): e1003329, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23505383

RESUMEN

Aging and longevity are complex traits influenced by genetic and environmental factors. To identify quantitative trait loci (QTLs) that control replicative lifespan, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard and a laboratory strain. The predominant QTL mapped to the rDNA, with the vineyard rDNA conferring a lifespan increase of 41%. The lifespan extension was independent of Sir2 and Fob1, but depended on a polymorphism in the rDNA origin of replication from the vineyard strain that reduced origin activation relative to the laboratory origin. Strains carrying vineyard rDNA origins have increased capacity for replication initiation at weak plasmid and genomic origins, suggesting that inability to complete genome replication presents a major impediment to replicative lifespan. Calorie restriction, a conserved mediator of lifespan extension that is also independent of Sir2 and Fob1, reduces rDNA origin firing in both laboratory and vineyard rDNA. Our results are consistent with the possibility that calorie restriction, similarly to the vineyard rDNA polymorphism, modulates replicative lifespan through control of rDNA origin activation, which in turn affects genome replication dynamics.


Asunto(s)
Envejecimiento/genética , ADN Ribosómico/genética , Sitios de Carácter Cuantitativo/genética , Saccharomyces cerevisiae , Restricción Calórica , Replicación del ADN/genética , ADN Ribosómico/fisiología , Proteínas de Unión al ADN/genética , Regulación Fúngica de la Expresión Génica/genética , Longevidad/genética , Polimorfismo Genético , Origen de Réplica/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética , Sirtuina 2/genética
6.
PLoS Biol ; 9(9): e1001144, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21909241

RESUMEN

Networks of co-regulated transcripts in genetically diverse populations have been studied extensively, but little is known about the degree to which these networks cause similar co-variation at the protein level. We quantified 354 proteins in a genetically diverse population of yeast segregants, which allowed for the first time construction of a coherent protein co-variation matrix. We identified tightly co-regulated groups of 36 and 93 proteins that were made up predominantly of genes involved in ribosome biogenesis and amino acid metabolism, respectively. Even though the ribosomal genes were tightly co-regulated at both the protein and transcript levels, genetic regulation of proteins was entirely distinct from that of transcripts, and almost no genes in this network showed a significant correlation between protein and transcript levels. This result calls into question the widely held belief that in yeast, as opposed to higher eukaryotes, ribosomal protein levels are regulated primarily by regulating transcript levels. Furthermore, although genetic regulation of the amino acid network was more similar for proteins and transcripts, regression analysis demonstrated that even here, proteins vary predominantly as a result of non-transcriptional variation. We also found that cis regulation, which is common in the transcriptome, is rare at the level of the proteome. We conclude that most inter-individual variation in levels of these particular high abundance proteins in this genetically diverse population is not caused by variation of their underlying transcripts.


Asunto(s)
Variación Genética , Mapeo de Interacción de Proteínas/métodos , Proteoma/genética , Transcripción Genética , Levaduras/genética , Segregación Cromosómica , Perfilación de la Expresión Génica , Carácter Cuantitativo Heredable , ARN Mensajero/metabolismo , Ribosomas/genética , Levaduras/metabolismo
7.
J Nat Prod ; 77(5): 1140-9, 2014 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-24761805

RESUMEN

Continued interest in the chemistry of Dalea spp. led to investigation of Dalea searlsiae, a plant native to areas of the western United States. Methanol extractions of D. searlsiae roots and subsequent chromatographic fractionation afforded the new prenylated and geranylated flavanones malheurans A-D (1-4) and known flavanones (5 and 6). Known rotenoids (7 and 8) and isoflavones (9 and 10) were isolated from aerial portions. Structure determination of pure compounds was accomplished primarily by extensive 1D- and 2D-NMR spectroscopy. The absolute configurations of compounds 1-5, 7, and 8 were assigned using electronic circular dichroism spectroscopy. Antimicrobial bioassays revealed significant activity concentrated in the plant roots. Compounds 1-6 exhibited MICs of 2-8 µg/mL against Streptococcus mutans, Bacillus cereus, and oxacillin-sensitive and -resistant Staphylococcus aureus. Aerial metabolites 7-10 were inactive against these organisms, but the presence of 7 and 8 prompted investigation of the antiinsectan activity of D. searlsiae metabolites toward the major crop pest Spodoptera frugiperda (fall armyworm). While compounds 1-10 all caused significant reductions in larval growth rates, associated mortality (33-66%) was highest with flavanone 4 and rotenoids 7 and 8. These findings suggest a differential allocation of antimicrobial and antiinsectan plant resources to root and aerial portions of the plant, respectively.


Asunto(s)
Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Fabaceae/química , Flavanonas/aislamiento & purificación , Flavanonas/farmacología , Fenoles/aislamiento & purificación , Fenoles/farmacología , Animales , Antiinfecciosos/química , Flavanonas/química , Flavonoides/química , Larva/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Oxacilina/farmacología , Fenoles/química , Raíces de Plantas/química , Spodoptera/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/genética
8.
PLoS Genet ; 7(8): e1002250, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21901113

RESUMEN

Aging and longevity are considered to be highly complex genetic traits. In order to gain insight into aging as a polygenic trait, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard strain RM11 and a laboratory strain S288c, to identify quantitative trait loci that control chronological lifespan. Among the major loci that regulate chronological lifespan in this cross, one genetic linkage was found to be congruent with a previously mapped locus that controls telomere length variation. We found that a single nucleotide polymorphism in BUL2, encoding a component of an ubiquitin ligase complex involved in trafficking of amino acid permeases, controls chronological lifespan and telomere length as well as amino acid uptake. Cellular amino acid availability changes conferred by the BUL2 polymorphism alter telomere length by modulating activity of a transcription factor Gln3. Among the GLN3 transcriptional targets relevant to this phenotype, we identified Wtm1, whose upregulation promotes nuclear retention of ribonucleotide reductase (RNR) components and inhibits the assembly of the RNR enzyme complex during S-phase. Inhibition of RNR is one of the mechanisms by which Gln3 modulates telomere length. Identification of a polymorphism in BUL2 in this outbred yeast population revealed a link among cellular amino acid availability, chronological lifespan, and telomere length control.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Envejecimiento/genética , Aminoácidos/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telómero/genética , Secuencia de Aminoácidos , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Aminoácidos/genética , Datos de Secuencia Molecular , Polimorfismo Genético , Sitios de Carácter Cuantitativo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/genética , Complejos de Ubiquitina-Proteína Ligasa/metabolismo
9.
Elife ; 122024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38315095

RESUMEN

There are approximately 500 known origins of replication in the yeast genome, and the process by which DNA replication initiates at these locations is well understood. In particular, these sites are made competent to initiate replication by loading of the Mcm replicative helicase prior to the start of S phase; thus, 'a site that binds Mcm in G1' might be considered to provide an operational definition of a replication origin. By fusing a subunit of Mcm to micrococcal nuclease, we previously showed that known origins are typically bound by a single Mcm double hexamer, loaded adjacent to the ARS consensus sequence (ACS). Here, we extend this analysis from known origins to the entire genome, identifying candidate Mcm binding sites whose signal intensity varies over at least three orders of magnitude. Published data quantifying single-stranded DNA (ssDNA) during S phase revealed replication initiation among the most abundant 1600 of these sites, with replication activity decreasing with Mcm abundance and disappearing at the limit of detection of ssDNA. Three other hallmarks of replication origins were apparent among the most abundant 5500 sites. Specifically, these sites: (1) appeared in intergenic nucleosome-free regions flanked on one or both sides by well-positioned nucleosomes; (2) were flanked by ACSs; and (3) exhibited a pattern of GC skew characteristic of replication initiation. We conclude that, if sites at which Mcm double hexamers are loaded can function as replication origins, then DNA replication origins are at least threefold more abundant than previously assumed, and we suggest that replication may occasionally initiate in essentially every intergenic region. These results shed light on recent reports that as many as 15% of replication events initiate outside of known origins, and this broader distribution of replication origins suggest that S phase in yeast may be less distinct from that in humans than widely assumed.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Origen de Réplica , Replicación del ADN , Nucleosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ADN Intergénico/metabolismo , Proteínas de Ciclo Celular/metabolismo
10.
bioRxiv ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38585982

RESUMEN

The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well-known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae , the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA arrays (rDNA). We have previously reported that in the absence of SIR2 , a derepressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both, activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30 . Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.

11.
Nat Genet ; 35(1): 57-64, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12897782

RESUMEN

Natural genetic variation can cause significant differences in gene expression, but little is known about the polymorphisms that affect gene regulation. We analyzed regulatory variation in a cross between laboratory and wild strains of Saccharomyces cerevisiae. Clustering and linkage analysis defined groups of coregulated genes and the loci involved in their regulation. Most expression differences mapped to trans-acting loci. Positional cloning and functional assays showed that polymorphisms in GPA1 and AMN1 affect expression of genes involved in pheromone response and daughter cell separation, respectively. We also asked whether particular classes of genes were more likely to contain trans-regulatory polymorphisms. Notably, transcription factors showed no enrichment, and trans-regulatory variation seems to be broadly dispersed across classes of genes with different molecular functions.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Variación Genética , Secuencias Reguladoras de Ácidos Nucleicos , Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/fisiología , Clonación Molecular , Ligamiento Genético , Datos de Secuencia Molecular , Familia de Multigenes , Proteínas de Saccharomyces cerevisiae/fisiología
12.
bioRxiv ; 2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38014147

RESUMEN

There are approximately 500 known origins of replication in the yeast genome, and the process by which DNA replication initiates at these locations is well understood. In particular, these sites are made competent to initiate replication by loading of the Mcm replicative helicase prior to the start of S phase; thus, "a site to which MCM is bound in G1" might be considered to provide an operational definition of a replication origin. By fusing a subunit of Mcm to micrococcal nuclease, a technique referred to as "Chromatin Endogenous Cleavage", we previously showed that known origins are typically bound by a single Mcm double hexamer, loaded adjacent to the ARS consensus sequence (ACS). Here we extend this analysis from known origins to the entire genome, identifying candidate Mcm binding sites whose signal intensity varies over at least 3 orders of magnitude. Published data quantifying the production of ssDNA during S phase showed clear evidence of replication initiation among the most abundant 1600 of these sites, with replication activity decreasing in concert with Mcm abundance and disappearing at the limit of detection of ssDNA. Three other hallmarks of replication origins were apparent among the most abundant 5,500 sites. Specifically, these sites (1) appeared in intergenic nucleosome-free regions that were flanked on one or both sides by well-positioned nucleosomes; (2) were flanked by ACSs; and (3) exhibited a pattern of GC skew characteristic of replication initiation. Furthermore, the high resolution of this technique allowed us to demonstrate a strong bias for detecting Mcm double-hexamers downstream rather than upstream of the ACS, which is consistent with the directionality of Mcm loading by Orc that has been observed in vitro. We conclude that, if sites at which Mcm double-hexamers are loaded can function as replication origins, then DNA replication origins are at least 3-fold more abundant than previously assumed, and we suggest that replication may occasionally initiate in essentially every intergenic region. These results shed light on recent reports that as many as 15% of replication events initiate outside of known origins, and this broader distribution of replication origins suggest that S phase in yeast may be less distinct from that in humans than is widely assumed.

13.
J Proteome Res ; 11(10): 5005-10, 2012 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-22900933

RESUMEN

Despite immense interest in the proteome as a source of biomarkers in cancer, mass spectrometry has yet to yield a clinically useful protein biomarker for tumor classification. To explore the potential of a particular class of mass spectrometry-based quantitation approaches, label-free alignment of liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) data sets, for the identification of biomarkers for acute leukemias, we asked whether a label-free alignment algorithm could distinguish known classes of leukemias on the basis of their proteomes. This approach to quantitation involves (1) computational alignment of MS1 peptide peaks across large numbers of samples; (2) measurement of the relative abundance of peptides across samples by integrating the area under the curve of the MS1 peaks; and (3) assignment of peptide IDs to those quantified peptide peaks on the basis of the corresponding MS2 spectra. We extracted proteins from blasts derived from four patients with acute myeloid leukemia (AML, acute leukemia of myeloid lineage) and five patients with acute lymphoid leukemia (ALL, acute leukemia of lymphoid lineage). Mobilized CD34+ cells purified from peripheral blood of six healthy donors and mononuclear cells (MNC) from the peripheral blood of two healthy donors were used as healthy controls. Proteins were analyzed by LC-MS/MS and quantified with a label-free alignment-based algorithm developed in our laboratory. Unsupervised hierarchical clustering of blinded samples separated the samples according to their known biological characteristics, with each sample group forming a discrete cluster. The four proteins best able to distinguish CD34+, AML, and ALL were all either known biomarkers or proteins whose biological functions are consistent with their ability to distinguish these classes. We conclude that alignment-based label-free quantitation of LC-MS/MS data sets can, at least in some cases, robustly distinguish known classes of leukemias, thus opening the possibility that large scale studies using such algorithms can lead to the identification of clinically useful biomarkers.


Asunto(s)
Leucemia Mieloide Aguda/sangre , Leucocitos Mononucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Espectrometría de Masas en Tándem , Antígenos CD34/metabolismo , Estudios de Casos y Controles , Análisis por Conglomerados , Humanos , Leucemia Mieloide Aguda/clasificación , Leucemia-Linfoma Linfoblástico de Células Precursoras/clasificación , Proteómica
14.
J Vis Exp ; (133)2018 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-29630039

RESUMEN

Numerous techniques have been developed to follow the progress of DNA replication through the S phase of the cell cycle. Most of these techniques have been directed toward elucidation of the location and timing of initiation of genome duplication rather than its completion. However, it is critical that we understand regions of the genome that are last to complete replication, because these regions suffer elevated levels of chromosomal breakage and mutation, and they have been associated with both disease and aging. Here we describe how we have extended a technique that has been used to monitor replication initiation to instead identify those regions of the genome last to complete replication. This approach is based on a combination of flow cytometry and high throughput sequencing. Although this report focuses on the application of this technique to yeast, the approach can be used with any cells that can be sorted in a flow cytometer according to DNA content.


Asunto(s)
Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Saccharomyces cerevisiae/genética , Citometría de Flujo , Humanos
15.
Health Phys ; 115(5): 637-645, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30260855

RESUMEN

Securing radioactive sources has become increasingly important given the rising threat of radiological terrorism. While radiation safety has long been established in most applicable industries, the importance of nuclear and radiological source security has lagged behind in nonnuclear material specific industries, such as academic institutions and medical facilities. To evaluate the attitudes and behaviors regarding nuclear security culture, an assessment of nuclear and radiological material practices was developed and conducted on 73 radioactive material users at a university. The survey portion of the assessment was comprised of a series of questions segregated into four categories: policy, enforcement, leadership, and behavior. Nuclear security awareness questions formed a subset of the questionnaire. Users were classified by their radioactive material experience and work classification: student, faculty, or other staff. Of the users surveyed, 9% were also interviewed face-to-face to further expand on their views of nuclear security culture. Results of the assessment showed that students from the work classification group as well as the cohort of radioactive material users with 2-5 y of experience possessed a greater degree of awareness towards nuclear security compared to faculty and other more experienced radioactive material users. Relative to students and faculty, other staff from the work classification group faced some difficulty judging the enforcement of policies, adequacy of inspection, and job performance review related to nuclear security. The response from all three groups emphasized the need to enhance threat-response preparedness and greater communication among stakeholders.


Asunto(s)
Radioisótopos , Medidas de Seguridad , Universidades , Docentes , Humanos , Entrevistas como Asunto , Política Organizacional , Administración de la Seguridad , Estudiantes , Encuestas y Cuestionarios , Universidades/organización & administración
16.
J Vis Exp ; (133)2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29553562

RESUMEN

Forward genetic screens using reporter genes inserted into the heterochromatin have been extensively used to investigate mechanisms of epigenetic control in model organisms. Technologies including short hairpin RNAs (shRNAs) and clustered regularly interspaced short palindromic repeats (CRISPR) have enabled such screens in diploid mammalian cells. Here we describe a large-scale shRNA screen for regulators of X-chromosome inactivation (XCI), using a murine cell line with firefly luciferase and hygromycin resistance genes knocked in at the C-terminus of the methyl CpG binding protein 2 (MeCP2) gene on the inactive X-chromosome (Xi). Reactivation of the construct in the reporter cell line conferred survival advantage under hygromycin B selection, enabling us to screen a large shRNA library and identify hairpins that reactivated the reporter by measuring their post-selection enrichment using next-generation sequencing. The enriched hairpins were then individually validated by testing their ability to activate the luciferase reporter on Xi.


Asunto(s)
Proteína 2 de Unión a Metil-CpG/genética , ARN Interferente Pequeño/genética , Inactivación del Cromosoma X/genética , Animales , Femenino , Humanos , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones
17.
Epigenetics Chromatin ; 11(1): 50, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30170615

RESUMEN

BACKGROUND: The long noncoding RNA Xist is critical for initiation and establishment of X-chromosome inactivation during embryogenesis in mammals, but it is unclear whether its continued expression is required for maintaining X-inactivation in vivo. RESULTS: By using an inactive X-chromosome-linked MeCP2-GFP reporter, which allowed us to enumerate reactivation events in the mouse brain even when they occur in very few cells, we found that deletion of Xist in the brain after establishment of X-chromosome inactivation leads to reactivation in 2-5% of neurons and in a smaller fraction of astrocytes. In contrast to global loss of both H3 lysine 27 trimethylation (H3K27m3) and histone H2A lysine 119 monoubiquitylation (H2AK119ub1) we observed upon Xist deletion, alterations in CpG methylation were subtle, and this was mirrored by only minor alterations in X-chromosome-wide gene expression levels, with highly expressed genes more prone to both derepression and demethylation compared to genes with low expression level. CONCLUSION: Our results demonstrate that Xist plays a role in the maintenance of histone repressive marks, DNA methylation and transcriptional repression on the inactive X-chromosome, but that partial loss of X-dosage compensation in the absence of Xist in the brain is well tolerated.


Asunto(s)
Encéfalo/metabolismo , Represión Epigenética , ARN Largo no Codificante/genética , Inactivación del Cromosoma X , Animales , Metilación de ADN , Código de Histonas , Ratones , Ratones Endogámicos C57BL , ARN Largo no Codificante/metabolismo , Eliminación de Secuencia
18.
Chem Biol ; 13(3): 236-8, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16638528

RESUMEN

In this issue of Chemistry & Biology, Perlstein et al. use genetically diverse strains of yeast to study the genetic basis of differences in cellular responses to small molecules. Their results suggest that drug responses are regulated by a limited number of loci, and that this system can identify clusters of functionally similar molecules.


Asunto(s)
Inmunidad Celular , Farmacogenética , Levaduras/genética , Animales , Análisis por Conglomerados , Evaluación Preclínica de Medicamentos , Farmacorresistencia Fúngica , Genes Fúngicos , Humanos , Levaduras/crecimiento & desarrollo
19.
J Biol Chem ; 282(52): 37805-14, 2007 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-17977840

RESUMEN

The SIR2 homologues HST3 and HST4 have been implicated in maintenance of genome integrity in the yeast Saccharomyces cerevisiae. We find that Hst3 has NAD-dependent histone deacetylase activity in vitro and that it functions during S phase to deacetylate the core domain of histone H3 at lysine 56 (H3K56). In response to genotoxic stress, Hst3 undergoes rapid Mec1-dependent phosphorylation and is targeted for ubiquitin-mediated proteolysis, thus providing a mechanism for the previously observed checkpoint-dependent accumulation of Ac-H3K56 at sites of DNA damage. Loss of Hst3-mediated regulation of H3K56 acetylation results in a defect in the S phase DNA damage checkpoint. The pathway that regulates H3K56 acetylation acts in parallel with the Rad9 pathway to transmit a DNA damage signal from Mec1 to Rad53. We also observe that loss of Hst3 function impairs sister chromatid cohesion (SCC). Both S phase checkpoint and SCC defects are phenocopied by H3K56 point mutants. Our findings demonstrate that Hst3-regulated H3K56 acetylation safeguards genome stability by controlling the S phase DNA damage response and promoting SCC.


Asunto(s)
Cromátides/genética , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Histona Desacetilasas/fisiología , Histonas/metabolismo , Lisina/química , Proteínas de Saccharomyces cerevisiae/fisiología , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Histona Desacetilasas/biosíntesis , Histona Desacetilasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Modelos Biológicos , Fenotipo , Fosforilación , Proteínas Serina-Treonina Quinasas , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo
20.
Nat Genet ; 39(11): 1369-75, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17952072

RESUMEN

Proper regulation of protein levels is essential for health, and abnormal levels of proteins are hallmarks of many diseases. A number of studies have recently shown that messenger RNA levels vary among individuals of a species and that genetic linkage analysis can be used to identify quantitative trait loci that influence these levels. By contrast, little is known about the genetic basis of variation in protein levels in genetically diverse populations, in large part because techniques for large-scale measurements of protein abundance lag far behind those for measuring transcript abundance. Here we describe a label-free, mass spectrometry-based approach to measuring protein levels in total unfractionated cellular proteins, and we apply this approach to elucidate the genetic basis of variation in protein abundance in a cross between two diverse strains of yeast. Loci that influenced protein abundance differed from those that influenced transcript levels, emphasizing the importance of direct analysis of the proteome.


Asunto(s)
Variación Genética , Proteoma/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Western Blotting , Cromatografía Liquida , Cromosomas Fúngicos/genética , Perfilación de la Expresión Génica , Ligamiento Genético , Marcadores Genéticos/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA