Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Am Chem Soc ; 142(17): 7976-7986, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32266815

RESUMEN

Proline is found in a cis conformation in proteins more often than other proteinogenic amino acids, where it influences structure and modulates function, being the focus of several high-resolution structural studies. However, until now, technical and methodological limitations have hampered the site-specific investigation of the conformational preferences of prolines present in poly proline (poly-P) homorepeats in their protein context. Here, we apply site-specific isotopic labeling to obtain high-resolution NMR data on the cis/trans equilibrium of prolines within the poly-P repeats of huntingtin exon 1, the causative agent of Huntington's disease. Screening prolines in different positions in long (poly-P11) and short (poly-P3) poly-P tracts, we found that, while the first proline of poly-P tracts adopts similar levels of cis conformation as isolated prolines, a length-dependent reduced abundance of cis conformers is observed for terminal prolines. Interestingly, the cis isomer could not be detected in inner prolines, in line with percentages derived from a large database of proline-centered tripeptides extracted from crystallographic structures. These results suggest a strong cooperative effect within poly-Ps that enhances their stiffness by diminishing the stability of the cis conformation. This rigidity is key to rationalizing the protection toward aggregation that the poly-P tract confers to huntingtin. Furthermore, the study provides new avenues to probe the structural properties of poly-P tracts in protein design as scaffolds or nanoscale rulers.


Asunto(s)
Prolina/química , Secuencia de Aminoácidos , Humanos , Conformación Proteica
2.
Chembiochem ; 21(6): 769-775, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31697025

RESUMEN

Remarkable technical progress in the area of structural biology has paved the way to study previously inaccessible targets. For example, large protein complexes can now be easily investigated by cryo-electron microscopy, and modern high-field NMR magnets have challenged the limits of high-resolution characterization of proteins in solution. However, the structural and dynamic characteristics of certain proteins with important functions still cannot be probed by conventional methods. These proteins in question contain low-complexity regions (LCRs), compositionally biased sequences where only a limited number of amino acids is repeated multiple times, which hamper their characterization. This Concept article describes a site-specific isotopic labeling (SSIL) strategy, which combines nonsense suppression and cell-free protein synthesis to overcome these limitations. An overview on how poly-glutamine tracts were made amenable to high-resolution structural studies is used to illustrate the usefulness of SSIL. Furthermore, we discuss the potential of this methodology to give further insights into the roles of LCRs in human pathologies and liquid-liquid phase separation, as well as the challenges that must be addressed in the future for the popularization of SSIL.


Asunto(s)
Marcaje Isotópico , Proteínas/química , Humanos , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Conformación Proteica
3.
Angew Chem Int Ed Engl ; 57(14): 3598-3601, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29359503

RESUMEN

Homorepeat (HR) proteins are involved in key biological processes and multiple pathologies, however their high-resolution characterization has been impaired due to their homotypic nature. To overcome this problem, we have developed a strategy to isotopically label individual glutamines within HRs by combining nonsense suppression and cell-free expression. Our method has enabled the NMR investigation of huntingtin exon1 with a 16-residue polyglutamine (poly-Q) tract, and the results indicate the presence of an N-terminal α-helix at near neutral pH that vanishes towards the end of the HR. The generality of the strategy was demonstrated by introducing a labeled glutamine into a pathological version of huntingtin with 46 glutamines. This methodology paves the way to decipher the structural and dynamic perturbations induced by HR extensions in poly-Q-related diseases. Our approach can be extended to other amino acids to investigate biological processes involving proteins containing low-complexity regions (LCRs).

4.
Structure ; 31(11): 1394-1406.e7, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37669668

RESUMEN

Arrestin-dependent G protein-coupled receptor (GPCR) signaling pathway is regulated by the phosphorylation state of GPCR's C-terminal domain, but the molecular bases of arrestin:receptor interaction are to be further illuminated. Here we investigated the impact of phosphorylation on the conformational features of the C-terminal region from three rhodopsin-like GPCRs, the vasopressin V2 receptor (V2R), the growth hormone secretagogue or ghrelin receptor type 1a (GHSR), and the ß2-adernergic receptor (ß2AR). Using phosphomimetic variants, we identified pre-formed secondary structure elements, or short linear motifs (SLiMs), that undergo specific conformational transitions upon phosphorylation. Of importance, such conformational transitions appear to favor arrestin-2 binding. Hence, our results suggest a model in which the phosphorylation-dependent structuration of the GPCR C-terminal regions would modulate arrestin binding and therefore signaling outcomes in arrestin-dependent pathways.


Asunto(s)
Arrestina , Receptores Acoplados a Proteínas G , Arrestina/química , Fosforilación , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Rodopsina/química
5.
ACS Chem Biol ; 18(9): 2039-2049, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37582223

RESUMEN

Nuclear magnetic resonance (NMR) studies of large biomolecular machines and highly repetitive proteins remain challenging due to the difficulty of assigning frequencies to individual nuclei. Here, we present an efficient strategy to address this challenge by engineering a Pyrococcus horikoshii tRNA/alanyl-tRNA synthetase pair that enables the incorporation of up to three isotopically labeled alanine residues in a site-specific manner using in vitro protein expression. The general applicability of this approach for NMR assignment has been demonstrated by introducing isotopically labeled alanines into four distinct proteins: huntingtin exon-1, HMA8 ATPase, the 300 kDa molecular chaperone ClpP, and the alanine-rich Phox2B transcription factor. For large protein assemblies, our labeling approach enabled unambiguous assignments while avoiding potential artifacts induced by site-specific mutations. When applied to Phox2B, which contains two poly-alanine tracts of nine and twenty alanines, we observed that the helical stability is strongly dependent on the homorepeat length. The capacity to selectively introduce alanines with distinct labeling patterns is a powerful tool to probe structure and dynamics of challenging biomolecular systems.


Asunto(s)
Alanina , Proteínas , Alanina/química , Resonancia Magnética Nuclear Biomolecular , Proteínas/metabolismo
6.
Structure ; 31(6): 644-650.e5, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37119819

RESUMEN

Huntington's disease neurodegeneration occurs when the number of consecutive glutamines in the huntingtin exon-1 (HTTExon1) exceeds a pathological threshold of 35. The sequence homogeneity of HTTExon1 reduces the signal dispersion in NMR spectra, hampering its structural characterization. By simultaneously introducing three isotopically labeled glutamines in a site-specific manner in multiple concatenated samples, 18 glutamines of a pathogenic HTTExon1 with 36 glutamines were unambiguously assigned. Chemical shift analyses indicate the α-helical persistence in the homorepeat and the absence of an emerging toxic conformation around the pathological threshold. Using the same type of samples, the recognition mechanism of Hsc70 molecular chaperone has been investigated, indicating that it binds to the N17 region of HTTExon1, inducing the partial unfolding of the poly-Q. The proposed strategy facilitates high-resolution structural and functional studies in low-complexity regions.


Asunto(s)
Péptidos , Péptidos/química , Exones , Conformación Proteica en Hélice alfa , Espectroscopía de Resonancia Magnética , Proteína Huntingtina/química
7.
Nat Struct Mol Biol ; 30(3): 309-320, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36864173

RESUMEN

Huntington's disease is a neurodegenerative disorder caused by a CAG expansion in the first exon of the HTT gene, resulting in an extended polyglutamine (poly-Q) tract in huntingtin (httex1). The structural changes occurring to the poly-Q when increasing its length remain poorly understood due to its intrinsic flexibility and the strong compositional bias. The systematic application of site-specific isotopic labeling has enabled residue-specific NMR investigations of the poly-Q tract of pathogenic httex1 variants with 46 and 66 consecutive glutamines. Integrative data analysis reveals that the poly-Q tract adopts long α-helical conformations propagated and stabilized by glutamine side chain to backbone hydrogen bonds. We show that α-helical stability is a stronger signature in defining aggregation kinetics and the structure of the resulting fibrils than the number of glutamines. Our observations provide a structural perspective of the pathogenicity of expanded httex1 and pave the way to a deeper understanding of poly-Q-related diseases.


Asunto(s)
Exones , Proteína Huntingtina/genética , Proteína Huntingtina/química , Espectroscopía de Resonancia Magnética , Conformación Proteica en Hélice alfa
8.
Nat Commun ; 14(1): 6316, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813838

RESUMEN

Cell cycle transitions result from global changes in protein phosphorylation states triggered by cyclin-dependent kinases (CDKs). To understand how this complexity produces an ordered and rapid cellular reorganisation, we generated a high-resolution map of changing phosphosites throughout unperturbed early cell cycles in single Xenopus embryos, derived the emergent principles through systems biology analysis, and tested them by biophysical modelling and biochemical experiments. We found that most dynamic phosphosites share two key characteristics: they occur on highly disordered proteins that localise to membraneless organelles, and are CDK targets. Furthermore, CDK-mediated multisite phosphorylation can switch homotypic interactions of such proteins between favourable and inhibitory modes for biomolecular condensate formation. These results provide insight into the molecular mechanisms and kinetics of mitotic cellular reorganisation.


Asunto(s)
Proteínas de Ciclo Celular , Quinasas Ciclina-Dependientes , Quinasas Ciclina-Dependientes/metabolismo , Fosforilación , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Quinasa 2 Dependiente de la Ciclina/metabolismo
9.
Biomolecules ; 12(5)2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35625550

RESUMEN

Arrestin-dependent pathways are a central component of G protein-coupled receptor (GPCRs) signaling. However, the molecular processes regulating arrestin binding are to be further illuminated, in particular with regard to the structural impact of GPCR C-terminal disordered regions. Here, we used an integrated biophysical strategy to describe the basal conformations of the C-terminal domains of three class A GPCRs, the vasopressin V2 receptor (V2R), the growth hormone secretagogue or ghrelin receptor type 1a (GHSR) and the ß2-adernergic receptor (ß2AR). By doing so, we revealed the presence of transient secondary structures in these regions that are potentially involved in the interaction with arrestin. These secondary structure elements differ from those described in the literature in interaction with arrestin. This suggests a mechanism where the secondary structure conformational preferences in the C-terminal regions of GPCRs could be a central feature for optimizing arrestins recognition.


Asunto(s)
Arrestina , Arrestinas , Arrestina/metabolismo , Arrestinas/metabolismo , Estructura Secundaria de Proteína , Receptores Acoplados a Proteínas G/metabolismo
10.
Nat Commun ; 12(1): 5463, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526502

RESUMEN

The p53 isoform, Δ133p53ß, is critical in promoting cancer. Here we report that Δ133p53ß activity is regulated through an aggregation-dependent mechanism. Δ133p53ß aggregates were observed in cancer cells and tumour biopsies. The Δ133p53ß aggregation depends on association with interacting partners including p63 family members or the CCT chaperone complex. Depletion of the CCT complex promotes accumulation of Δ133p53ß aggregates and loss of Δ133p53ß dependent cancer cell invasion. In contrast, association with p63 family members recruits Δ133p53ß from aggregates increasing its intracellular mobility. Our study reveals novel mechanisms of cancer progression for p53 isoforms which are regulated through sequestration in aggregates and recruitment upon association with specific partners like p63 isoforms or CCT chaperone complex, that critically influence cancer cell features like EMT, migration and invasion.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Agregación Patológica de Proteínas , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular Tumoral , Humanos , Células MCF-7 , Ratones , Modelos Moleculares , Mutación , Invasividad Neoplásica , Neoplasias/metabolismo , Neoplasias/patología , Agregado de Proteínas , Conformación Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Desplegamiento Proteico , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo
11.
Biomolecules ; 10(10)2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33086646

RESUMEN

The high-resolution structural study of huntingtin exon-1 (HttEx1) has long been hampered by its intrinsic properties. In addition to being prone to aggregate, HttEx1 contains low-complexity regions (LCRs) and is intrinsically disordered, ruling out several standard structural biology approaches. Here, we use a cell-free (CF) protein expression system to robustly and rapidly synthesize (sub-) pathological HttEx1. The open nature of the CF reaction allows the application of different isotopic labeling schemes, making HttEx1 amenable for nuclear magnetic resonance studies. While uniform and selective labeling facilitate the sequential assignment of HttEx1, combining CF expression with nonsense suppression allows the site-specific incorporation of a single labeled residue, making possible the detailed investigation of the LCRs. To optimize CF suppression yields, we analyze the expression and suppression kinetics, revealing that high concentrations of loaded suppressor tRNA have a negative impact on the final reaction yield. The optimized CF protein expression and suppression system is very versatile and well suited to produce challenging proteins with LCRs in order to enable the characterization of their structure and dynamics.


Asunto(s)
Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Agregación Patológica de Proteínas/genética , Procesamiento Proteico-Postraduccional/genética , Sistema Libre de Células , Exones/genética , Humanos , Enfermedad de Huntington/patología , Marcaje Isotópico , Cinética , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos/genética
12.
Structure ; 28(7): 733-746.e5, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32402249

RESUMEN

The causative agent of Huntington's disease, the poly-Q homo-repeat in the N-terminal region of huntingtin (httex1), is flanked by a 17-residue-long fragment (N17) and a proline-rich region (PRR), which promote and inhibit the aggregation propensity of the protein, respectively, by poorly understood mechanisms. Based on experimental data obtained from site-specifically labeled NMR samples, we derived an ensemble model of httex1 that identified both flanking regions as opposing poly-Q secondary structure promoters. While N17 triggers helicity through a promiscuous hydrogen bond network involving the side chains of the first glutamines in the poly-Q tract, the PRR promotes extended conformations in neighboring glutamines. Furthermore, a bioinformatics analysis of the human proteome showed that these structural traits are present in many human glutamine-rich proteins and that they are more prevalent in proteins with longer poly-Q tracts. Taken together, these observations provide the structural bases to understand previous biophysical and functional data on httex1.


Asunto(s)
Proteína Huntingtina/química , Proteínas Intrínsecamente Desordenadas/química , Ácido Poliglutámico/química , Secuencias de Aminoácidos , Humanos , Secuencias Repetitivas de Aminoácido
13.
Structure ; 26(4): 545-554.e4, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29503074

RESUMEN

The pseudo-kinase and signaling protein Pragmin has been linked to cancer by regulating protein tyrosine phosphorylation via unknown mechanisms. Here we present the crystal structure of the Pragmin 906-1,368 amino acid C terminus, which encompasses its kinase domain. We show that Pragmin contains a classical protein-kinase fold devoid of catalytic activity, despite a conserved catalytic lysine (K997). By proteomics, we discovered that this pseudo-kinase uses the tyrosine kinase CSK to induce protein tyrosine phosphorylation in human cells. Interestingly, the protein-kinase domain is flanked by N- and C-terminal extensions forming an original dimerization domain that regulates Pragmin self-association and stimulates CSK activity. A1329E mutation in the C-terminal extension destabilizes Pragmin dimerization and reduces CSK activation. These results reveal a dimerization mechanism by which a pseudo-kinase can induce protein tyrosine phosphorylation. Further sequence-structure analysis identified an additional member (C19orf35) of the superfamily of dimeric Pragmin/SgK269/PEAK1 pseudo-kinases.


Asunto(s)
Sustitución de Aminoácidos , Proteínas Portadoras/química , Tirosina/química , Familia-src Quinasas/química , Secuencias de Aminoácidos , Sitios de Unión , Proteína Tirosina Quinasa CSK , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular , Cinética , Modelos Moleculares , Mutación , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Tirosina/metabolismo , Familia-src Quinasas/genética , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA