Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Rev Lett ; 109(19): 197201, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23215419

RESUMEN

Contrary to previous studies that classify Na(2)IrO(3) as a realization of the Heisenberg-Kitaev model with a dominant spin-orbit coupling, we show that this system represents a highly unusual case in which the electronic structure is dominated by the formation of quasimolecular orbitals (QMOs), with substantial quenching of the orbital moments. The QMOs consist of six atomic orbitals on an Ir hexagon, but each Ir atom belongs to three different QMOs. The concept of such QMOs in solids invokes very different physics compared to the models considered previously. Employing density functional theory calculations and model considerations we find that both the insulating behavior and the experimentally observed zigzag antiferromagnetism in Na(2)IrO(3) naturally follow from the QMO model.

2.
Sci Adv ; 7(2)2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33523988

RESUMEN

Titanium monoxide (TiO), an important member of the rock salt 3d transition-metal monoxides, has not been studied in the stoichiometric single-crystal form. It has been challenging to prepare stoichiometric TiO due to the highly reactive Ti2+ We adapt a closely lattice-matched MgO(001) substrate and report the successful growth of single-crystalline TiO(001) film using molecular beam epitaxy. This enables a first-time study of stoichiometric TiO thin films, showing that TiO is metal but in proximity to Mott insulating state. We observe a transition to the superconducting phase below 0.5 K close to that of Ti metal. Density functional theory (DFT) and a DFT-based tight-binding model demonstrate the extreme importance of direct Ti-Ti bonding in TiO, suggesting that similar superconductivity exists in TiO and Ti metal. Our work introduces the new concept that TiO behaves more similar to its metal counterpart, distinguishing it from other 3d transition-metal monoxides.

3.
Phys Rev Lett ; 104(14): 146402, 2010 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-20481949

RESUMEN

We investigate the effect of Na intercalation in the layered Mott insulator TiOCl within the framework of density functional theory. We show that the system remains always insulating for all studied Na concentrations, and the evolution of the spectral weight upon Na doping is consistent with recent photoemission experiments. We predict the Na-doped superlattice structures, and show that substitutions of O by F, Cl by S, or Ti by V (or Sc), respectively, fail to metallize the system. We propose a description in terms of a multiorbital ionic Hubbard model in a quasi-two-dimensional lattice and discuss the nature of the insulating state under doping. Finally, a likely route for metallizing TiOCl by doping is proposed.

4.
Nat Commun ; 8(1): 686, 2017 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-28947738

RESUMEN

The resemblance of crystallographic and magnetic structures of the quasi-two-dimensional iridates Ba2IrO4 and Sr2IrO4 to La2CuO4 points at an analogy to cuprate high-Tc superconductors, even if spin-orbit coupling is very strong in iridates. Here we examine this analogy for the motion of a charge (hole or electron) added to the antiferromagnetic ground state. We show that correlation effects render the hole and electron case in iridates very different. An added electron forms a spin polaron, similar to the cuprates, but the situation of a removed electron is far more complex. Many-body 5d 4 configurations form which can be singlet and triplet states of total angular momentum that strongly affect the hole motion. This not only has ramifications for the interpretation of (inverse-)photoemission experiments but also demonstrates that correlation physics renders electron- and hole-doped iridates fundamentally different.Some iridate compounds such as Sr2IrO4 have electronic and atomic structures similar to quasi-2D copper oxides, raising the prospect of high temperature superconductivity. Here, the authors show that there is significant electron-hole asymmetry in iridates, contrary to expectations from the cuprates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA