Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Cell Sci ; 136(23)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37982431

RESUMEN

Sphingolipids (SPs) are one of the three major lipid classes in eukaryotic cells and serve as structural components of the plasma membrane. The rate-limiting step in SP biosynthesis is catalyzed by the serine palmitoyltransferase (SPT). In budding yeast (Saccharomyces cerevisiae), SPT is negatively regulated by the two proteins, Orm1 and Orm2. Regulating SPT activity enables cells to adapt SP metabolism to changing environmental conditions. Therefore, the Orm proteins are phosphorylated by two signaling pathways originating from either the plasma membrane or the lysosome (or vacuole in yeast). Moreover, uptake of exogenous serine is necessary for the regulation of SP biosynthesis, which suggests the existence of differentially regulated SPT pools based on their intracellular localization. However, measuring lipid metabolic enzyme activity in different cellular sub-compartments has been challenging. Combining a nanobody recruitment approach with SP flux analysis, we show that the nuclear endoplasmic reticulum (ER)-localized SPT and the peripheral ER localized SPT pools are differentially active. Thus, our data add another layer to the complex network of SPT regulation. Moreover, combining lipid metabolic enzyme re-localization with flux analysis serves as versatile tool to measure lipid metabolism with subcellular resolution.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina C-Palmitoiltransferasa/genética , Serina C-Palmitoiltransferasa/metabolismo , Proteínas de la Membrana/metabolismo , Esfingolípidos/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
J Cell Sci ; 136(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37259913

RESUMEN

The Saccharomyces cerevisiae casein kinase protein Yck3 is a central regulator at the vacuole that phosphorylates several proteins involved in membrane trafficking. Here, we set out to identify novel substrates of this protein. We found that endogenously tagged Yck3 localized not only at the vacuole, but also on endosomes. To disable Yck3 function, we generated a kinase-deficient mutant and thus identified the I-BAR-protein Ivy1 as a novel Yck3 substrate. Ivy1 localized to both endosomes and vacuoles, and Yck3 controlled this localization. A phosphomimetic Ivy1-SD mutant was found primarily on vacuoles, whereas its non-phosphorylatable SA variant strongly localized to endosomes, similar to what was observed upon deletion of Yck3. In vitro analysis revealed that Yck3-mediated phosphorylation strongly promoted Ivy1 recruitment to liposomes carrying the Rab7-like protein Ypt7. Modeling of Ivy1 with Ypt7 identified binding sites for Ypt7 and a positively charged patch, which were both required for Ivy1 localization. Strikingly, Ivy1 mutations in either site resulted in more cells with multilobed vacuoles, suggesting a partial defect in its membrane biogenesis. Our data thus indicate that Yck3-mediated phosphorylation controls both localization and function of Ivy1 in endolysosomal biogenesis.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Vacuolas , Vacuolas/metabolismo , Fosforilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Endosomas/metabolismo , Caseína Quinasas/metabolismo
3.
EMBO J ; 39(20): e105117, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32840906

RESUMEN

Heterotetrameric adapter (AP) complexes cooperate with the small GTPase Arf1 or lipids in cargo selection, vesicle formation, and budding at endomembranes in eukaryotic cells. While most AP complexes also require clathrin as the outer vesicle shell, formation of AP-3-coated vesicles involved in Golgi-to-vacuole transport in yeast has been postulated to depend on Vps41, a subunit of the vacuolar HOPS tethering complex. HOPS has also been identified as the tether of AP-3 vesicles on vacuoles. To unravel this conundrum of a dual Vps41 function, we anchored Vps41 stably to the mitochondrial outer membrane. By monitoring AP-3 recruitment, we now show that Vps41 can tether AP-3 vesicles to mitochondria, yet AP-3 vesicles can form in the absence of Vps41 or clathrin. By proximity labeling and mass spectrometry, we identify the Arf1 GTPase-activating protein (GAP) Age2 at the AP-3 coat and show that tethering, but not fusion at the vacuole can occur without complete uncoating. We conclude that AP-3 vesicles retain their coat after budding and that their complete uncoating occurs only after tethering at the vacuole.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Vesículas Citoplasmáticas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Factores de Ribosilacion-ADP/genética , Transporte Biológico Activo/genética , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Vesículas Citoplasmáticas/ultraestructura , Proteínas Activadoras de GTPasa/genética , Eliminación de Gen , Aparato de Golgi/metabolismo , Espectrometría de Masas , Fusión de Membrana , Microscopía Electrónica , Membranas Mitocondriales/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas/ultraestructura , Proteínas de Transporte Vesicular/genética
4.
J Cell Sci ; 135(8)2022 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-35343566

RESUMEN

Lysosomes mediate degradation of macromolecules to their precursors for cellular recycling. Additionally, lysosome-related organelles mediate cell type-specific functions. Chédiak-Higashi syndrome is an autosomal, recessive disease, in which loss of the protein LYST causes defects in lysosomes and lysosome-related organelles. The molecular function of LYST, however, is largely unknown. Here, we dissected the function of the yeast LYST homolog, Bph1. We show that Bph1 is an endosomal protein and an effector of the minor Rab5 isoform Ypt52. Strikingly, bph1Δ mutant cells have lipidated Atg8 on their endosomes, which is sorted via late endosomes into the vacuole lumen under non-autophagy-inducing conditions. In agreement with this, proteomic analysis of bph1Δ vacuoles reveals an accumulation of Atg8, reduced flux via selective autophagy, and defective endocytosis. Additionally, bph1Δ cells have reduced autophagic flux under starvation conditions. Our observations suggest that Bph1 is a novel Rab5 effector that maintains endosomal functioning. When Bph1 is lost, Atg8 is lipidated at endosomes even during normal growth and ends up in the vacuole lumen. Thus, our results contribute to the understanding of the role of LYST-related proteins and associated diseases.


Asunto(s)
Síndrome de Chediak-Higashi , Proteínas de Saccharomyces cerevisiae , Autofagia , Familia de las Proteínas 8 Relacionadas con la Autofagia/metabolismo , Síndrome de Chediak-Higashi/metabolismo , Endosomas/metabolismo , Humanos , Lisosomas/metabolismo , Proteínas/metabolismo , Proteómica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
5.
EMBO J ; 38(15): e101433, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31368600

RESUMEN

Cellular homeostasis requires the ubiquitin-dependent degradation of membrane proteins. This was assumed to be mediated exclusively either by endoplasmic reticulum-associated degradation (ERAD) or by endosomal sorting complexes required for transport (ESCRT)-dependent lysosomal degradation. We identified in Saccharomyces cerevisiae an additional pathway that selectively extracts membrane proteins at Golgi and endosomes for degradation by cytosolic proteasomes. One endogenous substrate of this endosome and Golgi-associated degradation pathway (EGAD) is the ER-resident membrane protein Orm2, a negative regulator of sphingolipid biosynthesis. Orm2 degradation is initiated by phosphorylation, which triggers its ER export. Once on Golgi and endosomes, Orm2 is poly-ubiquitinated by the membrane-embedded "Defective in SREBP cleavage" (Dsc) ubiquitin ligase complex. Cdc48/VCP then extracts ubiquitinated Orm2 from membranes, which is tightly coupled to the proteasomal degradation of Orm2. Thereby, EGAD prevents the accumulation of Orm2 at the ER and in post-ER compartments and promotes the controlled de-repression of sphingolipid biosynthesis. Thus, the selective degradation of membrane proteins by EGAD contributes to proteostasis and lipid homeostasis in eukaryotic cells.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Proteína que Contiene Valosina/metabolismo , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Aparato de Golgi/metabolismo , Metabolismo de los Lípidos , Proteínas de la Membrana/metabolismo , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/química
6.
Biol Chem ; 404(5): 455-465, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36655499

RESUMEN

Lipids function as the major building blocks of cellular membranes, as signaling molecules and as energy stores for metabolism. These important functions require a precise regulation of lipid biosynthesis, transport, turnover and storage. Lipids are exchanged among organelles through a sophisticated network of vesicular and non-vesicular transport routes. Lysosomes, as the main catabolic organelle, are at the center of this network and have recently evolved as one of the master-regulators of cellular lipid metabolism. Lipids from both endogenous and exogenous sources can be processed, sensed and sorted in and out of the lysosome. In this review, we focus on the role of the lysosome in lipid catabolism, transport and signaling. We highlight recent discoveries on the transport of lipids out of the lysosomal lumen and their exchange with other organelles via membrane contact sites. We also discuss the direct role of lysosomal lipids in the TORC1 signaling pathway, a regulator of cellular metabolism. Finally, we address lysosomal biogenesis, its role in the sorting of lipid metabolic enzymes and the dysregulation of these processes in disease.


Asunto(s)
Lisosomas , Orgánulos , Lisosomas/metabolismo , Homeostasis , Orgánulos/metabolismo , Membranas Mitocondriales/metabolismo , Metabolismo de los Lípidos , Lípidos
7.
PLoS Genet ; 16(8): e1008745, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32845888

RESUMEN

Sphingolipids are abundant and essential molecules in eukaryotes that have crucial functions as signaling molecules and as membrane components. Sphingolipid biosynthesis starts in the endoplasmic reticulum with the condensation of serine and palmitoyl-CoA. Sphingolipid biosynthesis is highly regulated to maintain sphingolipid homeostasis. Even though, serine is an essential component of the sphingolipid biosynthesis pathway, its role in maintaining sphingolipid homeostasis has not been precisely studied. Here we show that serine uptake is an important factor for the regulation of sphingolipid biosynthesis in Saccharomyces cerevisiae. Using genetic experiments, we find the broad-specificity amino acid permease Gnp1 to be important for serine uptake. We confirm these results with serine uptake assays in gnp1Δ cells. We further show that uptake of exogenous serine by Gnp1 is important to maintain cellular serine levels and observe a specific connection between serine uptake and the first step of sphingolipid biosynthesis. Using mass spectrometry-based flux analysis, we further observed imported serine as the main source for de novo sphingolipid biosynthesis. Our results demonstrate that yeast cells preferentially use the uptake of exogenous serine to regulate sphingolipid biosynthesis. Our study can also be a starting point to analyze the role of serine uptake in mammalian sphingolipid metabolism.


Asunto(s)
Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Esfingolípidos/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/genética , Homeostasis , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Esfingolípidos/biosíntesis
8.
Proc Natl Acad Sci U S A ; 117(17): 9497-9507, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32300005

RESUMEN

Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is a critical mediator of vascular function. eNOS is tightly regulated at various levels, including transcription, co- and posttranslational modifications, and by various protein-protein interactions. Using stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we identified several eNOS interactors, including the protein plasminogen activator inhibitor-1 (PAI-1). In cultured human umbilical vein endothelial cells (HUVECs), PAI-1 and eNOS colocalize and proximity ligation assays demonstrate a protein-protein interaction between PAI-1 and eNOS. Knockdown of PAI-1 or eNOS eliminates the proximity ligation assay (PLA) signal in endothelial cells. Overexpression of eNOS and HA-tagged PAI-1 in COS7 cells confirmed the colocalization observations in HUVECs. Furthermore, the source of intracellular PAI-1 interacting with eNOS was shown to be endocytosis derived. The interaction between PAI-1 and eNOS is a direct interaction as supported in experiments with purified proteins. Moreover, PAI-1 directly inhibits eNOS activity, reducing NO synthesis, and the knockdown or antagonism of PAI-1 increases NO bioavailability. Taken together, these findings place PAI-1 as a negative regulator of eNOS and disruptions in eNOS-PAI-1 binding promote increases in NO production and enhance vasodilation in vivo.


Asunto(s)
Regulación Enzimológica de la Expresión Génica/fisiología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Inhibidor 1 de Activador Plasminogénico/metabolismo , Disponibilidad Biológica , Línea Celular , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Óxido Nítrico , Óxido Nítrico Sintasa de Tipo III/genética , Piperazinas/farmacología , Inhibidor 1 de Activador Plasminogénico/genética , Unión Proteica , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , para-Aminobenzoatos/farmacología
9.
J Cell Sci ; 133(13)2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32499409

RESUMEN

Endosome biogenesis in eukaryotic cells is critical for nutrient uptake and plasma membrane integrity. Early endosomes initially contain Rab5, which is replaced by Rab7 on late endosomes prior to their fusion with lysosomes. Recruitment of Rab7 to endosomes requires the Mon1-Ccz1 guanine-nucleotide-exchange factor (GEF). Here, we show that full function of the Drosophila Mon1-Ccz1 complex requires a third stoichiometric subunit, termed Bulli (encoded by CG8270). Bulli localises to Rab7-positive endosomes, in agreement with its function in the GEF complex. Using Drosophila nephrocytes as a model system, we observe that absence of Bulli results in (i) reduced endocytosis, (ii) Rab5 accumulation within non-acidified enlarged endosomes, (iii) defective Rab7 localisation and (iv) impaired endosomal maturation. Moreover, longevity of animals lacking bulli is affected. Both the Mon1-Ccz1 dimer and a Bulli-containing trimer display Rab7 GEF activity. In summary, this suggests a key role for Bulli in the Rab5 to Rab7 transition during endosomal maturation rather than a direct influence on the GEF activity of Mon1-Ccz1.


Asunto(s)
Proteínas de Transporte Vesicular , Proteínas de Unión al GTP rab , Animales , Drosophila/metabolismo , Endocitosis , Endosomas/metabolismo , Transporte de Proteínas , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab5/genética , Proteínas de Unión al GTP rab5/metabolismo
10.
EMBO Rep ; 21(12): e50733, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33025734

RESUMEN

The mechanism and regulation of fusion between autophagosomes and lysosomes/vacuoles are still only partially understood in both yeast and mammals. In yeast, this fusion step requires SNARE proteins, the homotypic vacuole fusion and protein sorting (HOPS) tethering complex, the RAB7 GTPase Ypt7, and its guanine nucleotide exchange factor (GEF) Mon1-Ccz1. We and others recently identified Ykt6 as the autophagosomal SNARE protein. However, it has not been resolved when and how lipid-anchored Ykt6 is recruited onto autophagosomes. Here, we show that Ykt6 is recruited at an early stage of the formation of these carriers through a mechanism that depends on endoplasmic reticulum (ER)-resident Dsl1 complex and COPII-coated vesicles. Importantly, Ykt6 activity on autophagosomes is regulated by the Atg1 kinase complex, which inhibits Ykt6 through direct phosphorylation. Thus, our findings indicate that the Ykt6 pool on autophagosomal membranes is kept inactive by Atg1 phosphorylation, and once an autophagosome is ready to fuse with vacuole, Ykt6 dephosphorylation allows its engagement in the fusion event.


Asunto(s)
Autofagosomas , Proteínas de Saccharomyces cerevisiae , Animales , Proteínas Relacionadas con la Autofagia/genética , Factores de Intercambio de Guanina Nucleótido/genética , Fusión de Membrana , Proteínas Quinasas , Proteínas R-SNARE , Proteínas SNARE , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Vacuolas , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab
11.
J Biol Chem ; 295(34): 12028-12044, 2020 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-32611771

RESUMEN

The endosomal sorting complexes required for transport (ESCRT) mediate evolutionarily conserved membrane remodeling processes. Here, we used budding yeast (Saccharomyces cerevisiae) to explore how the ESCRT machinery contributes to plasma membrane (PM) homeostasis. We found that in response to reduced membrane tension and inhibition of TOR complex 2 (TORC2), ESCRT-III/Vps4 assemblies form at the PM and help maintain membrane integrity. In turn, the growth of ESCRT mutants strongly depended on TORC2-mediated homeostatic regulation of sphingolipid (SL) metabolism. This was caused by calcineurin-dependent dephosphorylation of Orm2, a repressor of SL biosynthesis. Calcineurin activity impaired Orm2 export from the endoplasmic reticulum (ER) and thereby hampered its subsequent endosome and Golgi-associated degradation (EGAD). The ensuing accumulation of Orm2 at the ER in ESCRT mutants necessitated TORC2 signaling through its downstream kinase Ypk1, which repressed Orm2 and prevented a detrimental imbalance of SL metabolism. Our findings reveal compensatory cross-talk between the ESCRT machinery, calcineurin/TORC2 signaling, and the EGAD pathway important for the regulation of SL biosynthesis and the maintenance of PM homeostasis.


Asunto(s)
Membrana Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Membrana Celular/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Diana Mecanicista del Complejo 2 de la Rapamicina/genética , Mutación , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
12.
Biol Chem ; 402(1): 25-38, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33544487

RESUMEN

Fatty acids (FAs) are a highly diverse class of molecules that can have variable chain length, number of double bonds and hydroxylation sites. FAs with 22 or more carbon atoms are described as very long chain fatty acids (VLCFAs). VLCFAs are synthesized in the endoplasmic reticulum (ER) through a four-step elongation cycle by membrane embedded enzymes. VLCFAs are precursors for the synthesis of sphingolipids (SLs) and glycerophospholipids. Besides their role as lipid constituents, VLCFAs are also found as precursors of lipid mediators. Mis-regulation of VLCFA metabolism can result in a variety of inherited diseases ranging from ichthyosis, to myopathies and demyelination. The enzymes for VLCFA biosynthesis are evolutionary conserved and many of the pioneering studies were performed in the model organism Saccharomyces cerevisiae. A growing body of evidence suggests that VLCFA metabolism is intricately regulated to maintain lipid homeostasis. In this review we will describe the metabolism of VLCFAs, how they are synthesized, transported and degraded and how these processes are regulated, focusing on budding yeast. We will review how lipid metabolism and membrane properties are affected by VLCFAs and which impact mutations in the biosynthetic genes have on physiology. We will also briefly describe diseases caused by mis-regulation of VLCFAs in human cells.


Asunto(s)
Enfermedad , Ácidos Grasos/metabolismo , Saccharomyces cerevisiae/metabolismo , Ácidos Grasos/química , Humanos , Saccharomyces cerevisiae/citología
13.
J Lipid Res ; 58(1): 226-235, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27836991

RESUMEN

Variations in the gene LDAH (C2ORF43), which encodes lipid droplet-associated hydrolase (LDAH), are among few loci associated with human prostate cancer. Homologs of LDAH have been identified as proteins of lipid droplets (LDs). LDs are cellular organelles that store neutral lipids, such as triacylglycerols and sterol esters, as precursors for membrane components and as reservoirs of metabolic energy. LDAH is reported to hydrolyze cholesterol esters and to be important in macrophage cholesterol ester metabolism. Here, we confirm that LDAH is localized to LDs in several model systems. We generated a murine model in which Ldah is disrupted but found no evidence for a major function of LDAH in cholesterol ester or triacylglycerol metabolism in vivo, nor a role in energy or glucose metabolism. Our data suggest that LDAH is not a major cholesterol ester hydrolase, and an alternative metabolic function may be responsible for its possible effect on development of prostate cancer.


Asunto(s)
Ésteres del Colesterol/genética , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/genética , Serina Proteasas/genética , Animales , Ésteres del Colesterol/metabolismo , Metabolismo Energético/genética , Glucosa/metabolismo , Humanos , Macrófagos/metabolismo , Masculino , Ratones , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Serina Proteasas/metabolismo , Triglicéridos/metabolismo
14.
Proteomics ; 16(21): 2759-2763, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27717283

RESUMEN

Sphingolipids are essential components of eukaryotic cells with important functions in membrane biology and cellular signaling. Their levels are tightly controlled and coordinated with the abundance of other membrane lipids. How sphingolipid homeostasis is achieved is not yet well understood. Studies performed primarily in yeast showed that the phosphorylation states of several enzymes and regulators of sphingolipid synthesis are important, although a global understanding for such regulation is lacking. Here, we used high-resolution MS-based proteomics and phosphoproteomics to analyze the cellular response to sphingolipid synthesis inhibition. Our dataset reveals that changes in protein phosphorylation, rather than protein abundance, dominate the response to blocking sphingolipid synthesis. We identified Ypk signaling as a pathway likely to be activated under these conditions, and we identified potential Ypk1 target proteins. Our data provide a rich resource for on-going mechanistic studies of key elements of the cellular response to the depletion of sphingolipid levels and the maintenance of sphingolipid homeostasis. All MS data have been deposited in the ProteomeXchange with identifier PXD003854 (http://proteomecentral.proteomexchange.org/dataset/PXD003854).


Asunto(s)
Proteínas Serina-Treonina Quinasas/genética , Proteómica , Proteínas de Saccharomyces cerevisiae/genética , Esfingolípidos/genética , Homeostasis/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Esfingolípidos/metabolismo
15.
J Biol Chem ; 290(7): 4238-47, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25519905

RESUMEN

Sphingolipids are essential components of eukaryotic membranes, where they serve to maintain membrane integrity. They are important components of membrane trafficking and function in signaling as messenger molecules. Sphingolipids are synthesized de novo from very long-chain fatty acids (VLCFA) and sphingoid long-chain bases, which are amide linked to form ceramide and further processed by addition of various headgroups. Little is known concerning the regulation of VLCFA levels and how cells coordinate their synthesis with the availability of long-chain bases for sphingolipid synthesis. Here we show that Elo2, a key enzyme of VLCFA synthesis, is controlled by signaling of the guanine nucleotide exchange factor Rom2, initiating at the plasma membrane. This pathway controls Elo2 phosphorylation state and VLCFA synthesis. Our data identify a regulatory mechanism for coordinating VLCFA synthesis with sphingolipid metabolism and link signal transduction pathways from the plasma membrane to the regulation of lipids for membrane homeostasis.


Asunto(s)
Acetiltransferasas/metabolismo , Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Homeostasis , Metabolismo de los Lípidos , Fosforilación , Saccharomyces cerevisiae/crecimiento & desarrollo , Transducción de Señal
16.
Mol Cell Proteomics ; 12(7): 1995-2005, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23592334

RESUMEN

Mass spectrometry (MS)-based quantitative proteomics has matured into a methodology able to detect and quantitate essentially all proteins of model microorganisms, allowing for unprecedented depth in systematic protein analyses. The most accurate quantitation approaches currently require lysine auxotrophic strains, which precludes analysis of most existing mutants, strain collections, or commercially important strains (e.g. those used for brewing or for the biotechnological production of metabolites). Here, we used MS-based proteomics to determine the global response of prototrophic yeast and bacteria to exogenous lysine. Unexpectedly, down-regulation of lysine synthesis in the presence of exogenous lysine is achieved via different mechanisms in different yeast strains. In each case, however, lysine in the medium down-regulates its biosynthesis, allowing for metabolic proteome labeling with heavy-isotope-containing lysine. This strategy of native stable isotope labeling by amino acids in cell culture (nSILAC) overcomes the limitations of previous approaches and can be used for the efficient production of protein standards for absolute SILAC quantitation in model microorganisms. As proof of principle, we have used nSILAC to globally analyze yeast proteome changes during salt stress.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lisina/metabolismo , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Marcaje Isotópico , Espectrometría de Masas , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo
17.
Nature ; 455(7217): 1251-4, 2008 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-18820680

RESUMEN

Mass spectrometry is a powerful technology for the analysis of large numbers of endogenous proteins. However, the analytical challenges associated with comprehensive identification and relative quantification of cellular proteomes have so far appeared to be insurmountable. Here, using advances in computational proteomics, instrument performance and sample preparation strategies, we compare protein levels of essentially all endogenous proteins in haploid yeast cells to their diploid counterparts. Our analysis spans more than four orders of magnitude in protein abundance with no discrimination against membrane or low level regulatory proteins. Stable-isotope labelling by amino acids in cell culture (SILAC) quantification was very accurate across the proteome, as demonstrated by one-to-one ratios of most yeast proteins. Key members of the pheromone pathway were specific to haploid yeast but others were unaltered, suggesting an efficient control mechanism of the mating response. Several retrotransposon-associated proteins were specific to haploid yeast. Gene ontology analysis pinpointed a significant change for cell wall components in agreement with geometrical considerations: diploid cells have twice the volume but not twice the surface area of haploid cells. Transcriptome levels agreed poorly with proteome changes overall. However, after filtering out low confidence microarray measurements, messenger RNA changes and SILAC ratios correlated very well for pheromone pathway components. Systems-wide, precise quantification directly at the protein level opens up new perspectives in post-genomics and systems biology.


Asunto(s)
Diploidia , Haploidia , Espectrometría de Masas/métodos , Proteoma/análisis , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/análisis , Saccharomyces cerevisiae/metabolismo , Perfilación de la Expresión Génica , Genes Fúngicos/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta , Proteoma/genética , ARN de Hongos/análisis , ARN de Hongos/genética , Retroelementos/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Coloración y Etiquetado , Transcripción Genética/genética
18.
Nat Commun ; 15(1): 5227, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898033

RESUMEN

Cells depend on their endolysosomal system for nutrient uptake and downregulation of plasma membrane proteins. These processes rely on endosomal maturation, which requires multiple membrane fusion steps. Early endosome fusion is promoted by the Rab5 GTPase and its effector, the hexameric CORVET tethering complex, which is homologous to the lysosomal HOPS. How these related complexes recognize their specific target membranes remains entirely elusive. Here, we solve the structure of CORVET by cryo-electron microscopy and revealed its minimal requirements for membrane tethering. As expected, the core of CORVET and HOPS resembles each other. However, the function-defining subunits show marked structural differences. Notably, we discover that unlike HOPS, CORVET depends not only on Rab5 but also on phosphatidylinositol-3-phosphate (PI3P) and membrane lipid packing defects for tethering, implying that an organelle-specific membrane code enables fusion. Our data suggest that both shape and membrane interactions of CORVET and HOPS are conserved in metazoans, thus providing a paradigm how tethering complexes function.


Asunto(s)
Microscopía por Crioelectrón , Endosomas , Fosfatos de Fosfatidilinositol , Endosomas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Fusión de Membrana , Proteínas de Unión al GTP rab5/metabolismo , Proteínas de Unión al GTP rab5/genética , Humanos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Membrana Celular/metabolismo , Animales , Lisosomas/metabolismo
19.
Mol Cell Proteomics ; 10(8): M110.003699, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21586754

RESUMEN

In-depth MS-based proteomics has necessitated fractionation of either proteins or peptides or both, often requiring considerable analysis time. Here we employ long liquid chromatography runs with high resolution coupled to an instrument with fast sequencing speed to investigate how much of the proteome is directly accessible to liquid chromatography-tandem MS characterization without any prefractionation steps. Triplicate single-run analyses identified 2990 yeast proteins, 68% of the total measured in a comprehensive yeast proteome. Among them, we covered the enzymes of the glycolysis and gluconeogenesis pathway targeted in a recent multiple reaction monitoring study. In a mammalian cell line, we identified 5376 proteins in a triplicate run, including representatives of 173 out of 200 KEGG metabolic and signaling pathways. Remarkably, the majority of proteins could be detected in the samples at sub-femtomole amounts and many in the low attomole range, in agreement with absolute abundance estimation done in previous works (Picotti et al. Cell, 138, 795-806, 2009). Our results imply an unexpectedly large dynamic range of the MS signal and sensitivity for liquid chromatography-tandem MS alone. With further development, single-run analysis has the potential to radically simplify many proteomic studies while maintaining a systems-wide view of the proteome.


Asunto(s)
Proteoma/metabolismo , Espectrometría de Masas en Tándem , Técnicas de Cultivo de Célula , Fraccionamiento Celular , Cromatografía Líquida de Alta Presión , Células HEK293 , Humanos , Marcaje Isotópico , Límite de Detección , Redes y Vías Metabólicas , Proteoma/aislamiento & purificación , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Contact (Thousand Oaks) ; 6: 25152564231208250, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37859671

RESUMEN

Ceramides, as key components of cellular membranes, play essential roles in various cellular processes, including apoptosis, cell proliferation, and cell signaling. Ceramides are the precursors of all complex sphingolipids in eukaryotic cells. They are synthesized in the endoplasmic reticulum and are further processed at the Golgi apparatus. Therefore, ceramides have to be transported between these two organelles. In mammalian cells, the ceramide transfer protein forms a contact site between the ER and the trans-Golgi region and transports ceramide utilizing its steroidogenic acute regulatory protein-related lipid transfer domain. In yeast, multiple mechanisms of nonvesicular ceramide transport have been described. This involves the nuclear-vacuolar junction protein Nvj2, the yeast tricalbin proteins, and the lipocalin-like protein Svf1. This review aims to provide a comprehensive overview of nonvesicular ceramide transport mechanisms and their relevance in cellular physiology. We will highlight the physiological and pathological consequences of perturbations in nonvesicular ceramide transport and discuss future challenges in identifying and analyzing ceramide transfer proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA