Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
IEEE Trans Vis Comput Graph ; 16(6): 1533-40, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20975195

RESUMEN

High quality volume rendering of SPH data requires a complex order-dependent resampling of particle quantities along the view rays. In this paper we present an efficient approach to perform this task using a novel view-space discretization of the simulation domain. Our method draws upon recent work on GPU-based particle voxelization for the efficient resampling of particles into uniform grids. We propose a new technique that leverages a perspective grid to adaptively discretize the view-volume, giving rise to a continuous level-of-detail sampling structure and reducing memory requirements compared to a uniform grid. In combination with a level-of-detail representation of the particle set, the perspective grid allows effectively reducing the amount of primitives to be processed at run-time. We demonstrate the quality and performance of our method for the rendering of fluid and gas dynamics SPH simulations consisting of many millions of particles.

2.
IEEE Trans Vis Comput Graph ; 15(6): 1251-8, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19834196

RESUMEN

In this paper we investigate scalability limitations in the visualization of large-scale particle-based cosmological simulations, and we present methods to reduce these limitations on current PC architectures. To minimize the amount of data to be streamed from disk to the graphics subsystem, we propose a visually continuous level-of-detail (LOD) particle representation based on a hierarchical quantization scheme for particle coordinates and rules for generating coarse particle distributions. Given the maximal world space error per level, our LOD selection technique guarantees a sub-pixel screen space error during rendering. A brick-based pagetree allows to further reduce the number of disk seek operations to be performed. Additional particle quantities like density, velocity dispersion, and radius are compressed at no visible loss using vector quantization of logarithmically encoded floating point values. By fine-grain view-frustum culling and presence acceleration in a geometry shader the required geometry throughput on the GPU can be significantly reduced. We validate the quality and scalability of our method by presenting visualizations of a particle-based cosmological dark-matter simulation exceeding 10 billion elements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA