Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 559(7715): 613-616, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30022163

RESUMEN

The global biosphere is commonly assumed to have been less productive before the rise of complex eukaryotic ecosystems than it is today1. However, direct evidence for this assertion is lacking. Here we present triple oxygen isotope measurements (∆17O) from sedimentary sulfates from the Sibley basin (Ontario, Canada) dated to about 1.4 billion years ago, which provide evidence for a less productive biosphere in the middle of the Proterozoic eon. We report what are, to our knowledge, the most-negative ∆17O values (down to -0.88‰) observed in sulfates, except for those from the terminal Cryogenian period2. This observation demonstrates that the mid-Proterozoic atmosphere was distinct from what persisted over approximately the past 0.5 billion years, directly reflecting a unique interplay among the atmospheric partial pressures of CO2 and O2 and the photosynthetic O2 flux at this time3. Oxygenic gross primary productivity is stoichiometrically related to the photosynthetic O2 flux to the atmosphere. Under current estimates of mid-Proterozoic atmospheric partial pressure of CO2 (2-30 times that of pre-anthropogenic levels), our modelling indicates that gross primary productivity was between about 6% and 41% of pre-anthropogenic levels if atmospheric O2 was between 0.1-1% or 1-10% of pre-anthropogenic levels, respectively. When compared to estimates of Archaean4-6 and Phanerozoic primary production7, these model solutions show that an increasingly more productive biosphere accompanied the broad secular pattern of increasing atmospheric O2 over geologic time8.


Asunto(s)
Ecosistema , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Oxígeno/análisis , Oxígeno/metabolismo , Azufre/análisis , Azufre/metabolismo , Atmósfera/química , Dióxido de Carbono/análisis , Historia Antigua , Ontario , Isótopos de Oxígeno/análisis , Isótopos de Oxígeno/metabolismo , Presión Parcial , Fotosíntesis , Probabilidad , Sulfatos/análisis , Sulfatos/metabolismo , Sulfuros/análisis , Sulfuros/metabolismo , Isótopos de Azufre/análisis , Isótopos de Azufre/metabolismo
2.
Nature ; 431(7005): 173-7, 2004 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-15356628

RESUMEN

The Proterozoic aeon (2.5 to 0.54 billion years (Gyr) ago) marks the time between the largely anoxic world of the Archean (> 2.5 Gyr ago) and the dominantly oxic world of the Phanerozoic (< 0.54 Gyr ago). The course of ocean chemistry through the Proterozoic has traditionally been explained by progressive oxygenation of the deep ocean in response to an increase in atmospheric oxygen around 2.3 Gyr ago. This postulated rise in the oxygen content of the ocean is in turn thought to have led to the oxidation of dissolved iron, Fe(II), thus ending the deposition of banded iron formations (BIF) around 1.8 Gyr ago. An alternative interpretation suggests that the increasing atmospheric oxygen levels enhanced sulphide weathering on land and the flux of sulphate to the oceans. This increased rates of sulphate reduction, resulting in Fe(II) removal in the form of pyrite as the oceans became sulphidic. Here we investigate sediments from the approximately 1.8-Gyr-old Animikie group, Canada, which were deposited during the final stages of the main global period of BIF deposition. This allows us to evaluate the two competing hypotheses for the termination of BIF deposition. We use iron-sulphur-carbon (Fe-S-C) systematics to demonstrate continued ocean anoxia after the final global deposition of BIF and show that a transition to sulphidic bottom waters was ultimately responsible for the termination of BIF deposition. Sulphidic conditions may have persisted until a second major rise in oxygen between 0.8 to 0.58 Gyr ago, possibly reducing global rates of primary production and arresting the pace of algal evolution.


Asunto(s)
Oxígeno/análisis , Agua de Mar/química , Sulfuros/análisis , Atmósfera/química , Canadá , Carbono/análisis , Carbono/química , Eucariontes/fisiología , Sedimentos Geológicos/química , Hierro/análisis , Hierro/química , Océanos y Mares , Oxígeno/química , Oxígeno/metabolismo , Sulfuros/química , Sulfuros/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA