Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 42(5): e109032, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36715213

RESUMEN

Despite a growing catalog of secreted factors critical for lymphatic network assembly, little is known about the mechanisms that modulate the expression level of these molecular cues in blood vascular endothelial cells (BECs). Here, we show that a BEC-specific transcription factor, SOX7, plays a crucial role in a non-cell-autonomous manner by modulating the transcription of angiocrine signals to pattern lymphatic vessels. While SOX7 is not expressed in lymphatic endothelial cells (LECs), the conditional loss of SOX7 function in mouse embryos causes a dysmorphic dermal lymphatic phenotype. We identify novel distant regulatory regions in mice and humans that contribute to directly repressing the transcription of a major lymphangiogenic growth factor (Vegfc) in a SOX7-dependent manner. Further, we show that SOX7 directly binds HEY1, a canonical repressor of the Notch pathway, suggesting that transcriptional repression may also be modulated by the recruitment of this protein partner at Vegfc genomic regulatory regions. Our work unveils a role for SOX7 in modulating downstream signaling events crucial for lymphatic patterning, at least in part via the transcriptional repression of VEGFC levels in the blood vascular endothelium.


Asunto(s)
Células Endoteliales , Vasos Linfáticos , Humanos , Ratones , Animales , Células Endoteliales/metabolismo , Vasos Linfáticos/metabolismo , Regulación de la Expresión Génica , Endotelio Vascular , Factores de Transcripción/metabolismo , Linfangiogénesis/genética , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo
2.
Nucleic Acids Res ; 52(9): 5301-5319, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38381071

RESUMEN

Insoluble cytoplasmic aggregate formation of the RNA-binding protein TDP-43 is a major hallmark of neurodegenerative diseases including Amyotrophic Lateral Sclerosis. TDP-43 localizes predominantly in the nucleus, arranging itself into dynamic condensates through liquid-liquid phase separation (LLPS). Mutations and post-translational modifications can alter the condensation properties of TDP-43, contributing to the transition of liquid-like biomolecular condensates into solid-like aggregates. However, to date it has been a challenge to study the dynamics of this process in vivo. We demonstrate through live imaging that human TDP-43 undergoes nuclear condensation in spinal motor neurons in a living animal. RNA-binding deficiencies as well as post-translational modifications can lead to aberrant condensation and altered TDP-43 compartmentalization. Single-molecule tracking revealed an altered mobility profile for RNA-binding deficient TDP-43. Overall, these results provide a critically needed in vivo characterization of TDP-43 condensation, demonstrate phase separation as an important regulatory mechanism of TDP-43 accessibility, and identify a molecular mechanism of how functional TDP-43 can be regulated.


Asunto(s)
Proteínas de Unión al ADN , Neuronas Motoras , Proteínas de Unión al ARN , Animales , Humanos , Ratones , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/genética , Condensados Biomoleculares/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Homeostasis , Neuronas Motoras/metabolismo , Mutación , Unión Proteica , Procesamiento Proteico-Postraduccional , ARN/metabolismo , ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
3.
EMBO Rep ; 24(10): e55043, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37551717

RESUMEN

The cardiac endothelium influences ventricular chamber development by coordinating trabeculation and compaction. However, the endothelial-specific molecular mechanisms mediating this coordination are not fully understood. Here, we identify the Sox7 transcription factor as a critical cue instructing cardiac endothelium identity during ventricular chamber development. Endothelial-specific loss of Sox7 function in mice results in cardiac ventricular defects similar to non-compaction cardiomyopathy, with a change in the proportions of trabecular and compact cardiomyocytes in the mutant hearts. This phenotype is paralleled by abnormal coronary artery formation. Loss of Sox7 function disrupts the transcriptional regulation of the Notch pathway and connexins 37 and 40, which govern coronary arterial specification. Upon Sox7 endothelial-specific deletion, single-nuclei transcriptomics analysis identifies the depletion of a subset of Sox9/Gpc3-positive endocardial progenitor cells and an increase in erythro-myeloid cell lineages. Fate mapping analysis reveals that a subset of Sox7-null endothelial cells transdifferentiate into hematopoietic but not cardiomyocyte lineages. Our findings determine that Sox7 maintains cardiac endothelial cell identity, which is crucial to the cellular cross-talk that drives ventricular compaction and coronary artery development.


Asunto(s)
Vasos Coronarios , Células Endoteliales , Animales , Ratones , Vasos Coronarios/metabolismo , Células Endoteliales/metabolismo , Miocitos Cardíacos/metabolismo , Regulación de la Expresión Génica , Endotelio/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo
4.
Development ; 148(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34080610

RESUMEN

The lymphatic vasculature is an integral component of the cardiovascular system. It is essential to maintain tissue fluid homeostasis, direct immune cell trafficking and absorb dietary lipids from the digestive tract. Major advances in our understanding of the genetic and cellular events important for constructing the lymphatic vasculature during development have recently been made. These include the identification of novel sources of lymphatic endothelial progenitor cells, the recognition of lymphatic endothelial cell specialisation and heterogeneity, and discovery of novel genes and signalling pathways underpinning developmental lymphangiogenesis. Here, we review these advances and discuss how they inform our understanding of lymphatic network formation, function and dysfunction.


Asunto(s)
Sistema Cardiovascular/crecimiento & desarrollo , Linfangiogénesis/fisiología , Vasos Linfáticos/fisiología , Animales , Sistema Cardiovascular/citología , Sistema Cardiovascular/embriología , Células Endoteliales/fisiología , Homeostasis , Humanos , Vasos Linfáticos/citología , Vasos Linfáticos/embriología , Transducción de Señal
5.
Nucleic Acids Res ; 49(19): 10931-10955, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34570228

RESUMEN

Few genetically dominant mutations involved in human disease have been fully explained at the molecular level. In cases where the mutant gene encodes a transcription factor, the dominant-negative mode of action of the mutant protein is particularly poorly understood. Here, we studied the genome-wide mechanism underlying a dominant-negative form of the SOX18 transcription factor (SOX18RaOp) responsible for both the classical mouse mutant Ragged Opossum and the human genetic disorder Hypotrichosis-lymphedema-telangiectasia-renal defect syndrome. Combining three single-molecule imaging assays in living cells together with genomics and proteomics analysis, we found that SOX18RaOp disrupts the system through an accumulation of molecular interferences which impair several functional properties of the wild-type SOX18 protein, including its target gene selection process. The dominant-negative effect is further amplified by poisoning the interactome of its wild-type counterpart, which perturbs regulatory nodes such as SOX7 and MEF2C. Our findings explain in unprecedented detail the multi-layered process that underpins the molecular aetiology of dominant-negative transcription factor function.


Asunto(s)
Glomerulonefritis/genética , Hipotricosis/genética , Linfedema/genética , Factores de Transcripción SOXF/genética , Telangiectasia/genética , Transcripción Genética , Animales , Células COS , Chlorocebus aethiops , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Genes Reporteros , Glomerulonefritis/metabolismo , Glomerulonefritis/patología , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hipotricosis/metabolismo , Hipotricosis/patología , Luciferasas/genética , Luciferasas/metabolismo , Linfedema/metabolismo , Linfedema/patología , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Ratones , Mutación , Factores de Transcripción SOXF/metabolismo , Imagen Individual de Molécula , Telangiectasia/metabolismo , Telangiectasia/patología
6.
Genes Dev ; 29(15): 1618-30, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26253536

RESUMEN

The lymphatic vasculature plays roles in tissue fluid balance, immune cell trafficking, fatty acid absorption, cancer metastasis, and cardiovascular disease. Lymphatic vessels form by lymphangiogenesis, the sprouting of new lymphatics from pre-existing vessels, in both development and disease contexts. The apical signaling pathway in lymphangiogenesis is the VEGFC/VEGFR3 pathway, yet how signaling controls cellular transcriptional output remains unknown. We used a forward genetic screen in zebrafish to identify the transcription factor mafba as essential for lymphatic vessel development. We found that mafba is required for the migration of lymphatic precursors after their initial sprouting from the posterior cardinal vein. mafba expression is enriched in sprouts emerging from veins, and we show that mafba functions cell-autonomously during lymphatic vessel development. Mechanistically, Vegfc signaling increases mafba expression to control downstream transcription, and this regulatory relationship is dependent on the activity of SoxF transcription factors, which are essential for mafba expression in venous endothelium. Here we identify an indispensable Vegfc-SoxF-Mafba pathway in lymphatic development.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Linfangiogénesis/genética , Vasos Linfáticos/embriología , Factor de Transcripción MafB/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Transducción de Señal , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Movimiento Celular/genética , Embrión no Mamífero , Factor de Transcripción MafB/genética , Mutación , Proteínas del Tejido Nervioso/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética
7.
Dev Dyn ; 251(2): 336-349, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34174014

RESUMEN

BACKGROUND: Lymphatic vascular development is regulated by well-characterized signaling and transcriptional pathways. These pathways regulate lymphatic endothelial cell (LEC) migration, motility, polarity, and morphogenesis. Canonical and non-canonical WNT signaling pathways are known to control LEC polarity and development of lymphatic vessels and valves. PKD1, encoding Polycystin-1, is the most commonly mutated gene in polycystic kidney disease but has also been shown to be essential in lymphatic vascular morphogenesis. The mechanism by which Pkd1 acts during lymphangiogenesis remains unclear. RESULTS: Here we find that loss of non-canonical WNT signaling components Wnt5a and Ryk phenocopy lymphatic defects seen in Pkd1 knockout mice. To investigate genetic interaction, we generated Pkd1;Wnt5a double knockout mice. Loss of Wnt5a suppressed phenotypes seen in the lymphatic vasculature of Pkd1-/- mice and Pkd1 deletion suppressed phenotypes observed in Wnt5a-/- mice. Thus, we report mutually suppressive roles for Pkd1 and Wnt5a, with developing lymphatic networks restored to a more wild type state in double mutant mice. This genetic interaction between Pkd1 and the non-canonical WNT signaling pathway ultimately controls LEC polarity and the morphogenesis of developing vessel networks. CONCLUSION: Our work suggests that Pkd1 acts at least in part by regulating non-canonical WNT signaling during the formation of lymphatic vascular networks.


Asunto(s)
Vasos Linfáticos , Enfermedades Renales Poliquísticas , Animales , Vasos Linfáticos/metabolismo , Ratones , Ratones Noqueados , Morfogénesis/genética , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Proteína Quinasa C , Proteínas Tirosina Quinasas Receptoras/metabolismo , Vía de Señalización Wnt/genética , Proteína Wnt-5a/genética , Proteína Wnt-5a/metabolismo
8.
Semin Cell Dev Biol ; 99: 12-19, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-30172762

RESUMEN

Biophysical parameters that govern transcription factors activity are binding locations across the genome, dwelling time at these regulatory elements and specific protein-protein interactions. Most molecular strategies used to develop small compounds that block transcription factors activity have been based on biochemistry and cell biology methods that that do not take into consideration these key biophysical features. Here, we review the advance in the field of transcription factor biology and describe how their interactome and transcriptional regulation on a genome wide scale have been deciphered. We suggest that this new knowledge has the potential to be used to implement innovative research drug discovery program.


Asunto(s)
Redes Reguladoras de Genes , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Animales , Humanos , Unión Proteica , Mapas de Interacción de Proteínas
9.
Development ; 145(10)2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773646

RESUMEN

Despite the essential role of the lymphatic vasculature in tissue homeostasis and disease, knowledge of the organ-specific origins of lymphatic endothelial progenitor cells remains limited. The assumption that most murine embryonic lymphatic endothelial cells (LECs) are venous derived has recently been challenged. Here, we show that the embryonic dermal blood capillary plexus constitutes an additional, local source of LECs that contributes to the formation of the dermal lymphatic vascular network. We describe a novel mechanism whereby rare PROX1-positive endothelial cells exit the capillary plexus in a Ccbe1-dependent manner to establish discrete LEC clusters. As development proceeds, these clusters expand and further contribute to the growing lymphatic system. Lineage tracing and analyses of Gata2-deficient mice confirmed that these clusters are endothelial in origin. Furthermore, ectopic expression of Vegfc in the vasculature increased the number of PROX1-positive progenitors within the capillary bed. Our work reveals a novel source of lymphatic endothelial progenitors employed during construction of the dermal lymphatic vasculature and demonstrates that the blood vasculature is likely to remain an ongoing source of LECs during organogenesis, raising the question of whether a similar mechanism operates during pathological lymphangiogenesis.


Asunto(s)
Capilares/citología , Células Endoteliales/citología , Proteínas de Homeodominio/genética , Linfangiogénesis/fisiología , Vasos Linfáticos/embriología , Células Madre/citología , Proteínas Supresoras de Tumor/genética , Animales , Proteínas de Unión al Calcio/genética , Factor de Transcripción GATA2/genética , Linfangiogénesis/genética , Vasos Linfáticos/citología , Ratones , Ratones Transgénicos , Factor C de Crecimiento Endotelial Vascular/biosíntesis , Factor C de Crecimiento Endotelial Vascular/genética
10.
Dev Dyn ; 249(10): 1201-1216, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32525258

RESUMEN

BACKGROUND: Lymphatic vessels play key roles in tissue fluid homeostasis, immune cell trafficking and in diverse disease settings. Lymphangiogenesis requires lymphatic endothelial cell (LEC) differentiation, proliferation, migration, and co-ordinated network formation, yet the transcriptional regulators underpinning these processes remain to be fully understood. The transcription factor MAFB was recently identified as essential for lymphangiogenesis in zebrafish and in cultured human LECs. MAFB is activated in response to VEGFC-VEGFR3 signaling and acts as a downstream effector. However, it remains unclear if the role of MAFB in lymphatic development is conserved in the mammalian embryo. RESULTS: We generated a Mafb loss-of-function mouse using CRISPR/Cas9 gene editing. Mafb mutant mice presented with perinatal lethality associated with cyanosis. We identify a role for MAFB in modifying lymphatic network morphogenesis in the developing dermis, as well as developing and postnatal diaphragm. Furthermore, mutant vessels displayed excessive smooth muscle cell coverage, suggestive of a defect in the maturation of lymphatic networks. CONCLUSIONS: This work confirms a conserved role for MAFB in murine lymphatics that is subtle and modulatory and may suggest redundancy in MAF family transcription factors during lymphangiogenesis.


Asunto(s)
Linfangiogénesis/fisiología , Vasos Linfáticos/metabolismo , Factor de Transcripción MafB/fisiología , Animales , Sistemas CRISPR-Cas , Cruzamientos Genéticos , Genoma , Genotipo , Hibridación in Situ , Ratones , Ratones Noqueados , Mutación , ARN Mensajero/metabolismo , Transducción de Señal , Factores de Tiempo
11.
Development ; 144(10): 1887-1895, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28512199

RESUMEN

SOX family proteins SOX2 and SOX18 have been reported as being essential in determining hair follicle type; however, the role they play during development remains unclear. Here, we demonstrate that Sox18 regulates the normal differentiation of the dermal papilla of all hair types. In guard (primary) hair dermal condensate (DC) cells, we identified transient Sox18 in addition to SOX2 expression at E14.5, which allowed fate tracing of primary DC cells until birth. Similarly, expression of Sox18 was detected in the DC cells of secondary hairs at E16.5 and in tertiary hair at E18.5. Dominant-negative Sox18 mutation (opposum) did not prevent DC formation in any hair type. However, it affected dermal papilla differentiation, restricting hair formation especially in secondary and tertiary hairs. This Sox18 mutation also prevented neonatal dermal cells or dermal papilla spheres from inducing hair in regeneration assays. Microarray expression studies identified WNT5A and TNC as potential downstream effectors of SOX18 that are important for epidermal WNT signalling. In conclusion, SOX18 acts as a mesenchymal molecular switch necessary for the formation and function of the dermal papilla in all hair types.


Asunto(s)
Diferenciación Celular/genética , Folículo Piloso/embriología , Cabello/embriología , Factores de Transcripción SOXF/fisiología , Animales , Dermis/embriología , Dermis/metabolismo , Embrión de Mamíferos , Células Epidérmicas , Epidermis/embriología , Femenino , Genes Dominantes , Genes de Cambio/fisiología , Cabello/metabolismo , Folículo Piloso/metabolismo , Masculino , Ratones , Ratones Transgénicos , Factores de Transcripción SOXF/genética
12.
Development ; 144(14): 2629-2639, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28619820

RESUMEN

Arterial specification and differentiation are influenced by a number of regulatory pathways. While it is known that the Vegfa-Notch cascade plays a central role, the transcriptional hierarchy controlling arterial specification has not been fully delineated. To elucidate the direct transcriptional regulators of Notch receptor expression in arterial endothelial cells, we used histone signatures, DNaseI hypersensitivity and ChIP-seq data to identify enhancers for the human NOTCH1 and zebrafish notch1b genes. These enhancers were able to direct arterial endothelial cell-restricted expression in transgenic models. Genetic disruption of SoxF binding sites established a clear requirement for members of this group of transcription factors (SOX7, SOX17 and SOX18) to drive the activity of these enhancers in vivo Endogenous deletion of the notch1b enhancer led to a significant loss of arterial connections to the dorsal aorta in Notch pathway-deficient zebrafish. Loss of SoxF function revealed that these factors are necessary for NOTCH1 and notch1b enhancer activity and for correct endogenous transcription of these genes. These findings position SoxF transcription factors directly upstream of Notch receptor expression during the acquisition of arterial identity in vertebrates.


Asunto(s)
Arterias/embriología , Arterias/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Malformaciones Arteriovenosas/embriología , Malformaciones Arteriovenosas/genética , Malformaciones Arteriovenosas/metabolismo , Elementos de Facilitación Genéticos , Femenino , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Embarazo , Receptor Notch1/deficiencia , Factores de Transcripción SOXF/deficiencia , Homología de Secuencia de Aminoácido , Transducción de Señal , Pez Cebra , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
13.
Nucleic Acids Res ; 46(21): 11381-11395, 2018 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-30335167

RESUMEN

During embryogenesis, vascular development relies on a handful of transcription factors that instruct cell fate in a distinct sub-population of the endothelium (1). The SOXF proteins that comprise SOX7, 17 and 18, are molecular switches modulating arterio-venous and lymphatic endothelial differentiation (2,3). Here, we show that, in the SOX-F family, only SOX18 has the ability to switch between a monomeric and a dimeric form. We characterized the SOX18 dimer in binding assays in vitro, and using a split-GFP reporter assay in a zebrafish model system in vivo. We show that SOX18 dimerization is driven by a novel motif located in the vicinity of the C-terminus of the DNA binding region. Insertion of this motif in a SOX7 monomer forced its assembly into a dimer. Genome-wide analysis of SOX18 binding locations on the chromatin revealed enrichment for a SOX dimer binding motif, correlating with genes with a strong endothelial signature. Using a SOX18 small molecule inhibitor that disrupts dimerization, we revealed that dimerization is important for transcription. Overall, we show that dimerization is a specific feature of SOX18 that enables the recruitment of key endothelial transcription factors, and refines the selectivity of the binding to discrete genomic locations assigned to endothelial specific genes.


Asunto(s)
Factores de Transcripción SOXF/química , Secuencias de Aminoácidos , Animales , Técnicas Biosensibles , Proteínas de Unión al ADN/química , Células Endoteliales/metabolismo , Endotelio/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Fluorescentes Verdes/química , Humanos , Ratones , Mutación , Sistemas de Lectura Abierta , Dominios Proteicos , Multimerización de Proteína , Pez Cebra , Proteínas de Pez Cebra/química
14.
Circulation ; 135(8): 786-805, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-27899395

RESUMEN

BACKGROUND: During adult life, blood vessel formation is thought to occur via angiogenic processes involving branching from existing vessels. An alternate proposal suggests that neovessels form from endothelial progenitors able to assemble the intimal layers. We here aimed to define vessel-resident endothelial progenitors in vivo in a variety of tissues in physiological and pathological situations such as normal aorta, lungs, and wound healing, tumors, and placenta, as well. METHODS: Based on protein expression levels of common endothelial markers using flow cytometry, 3 subpopulations of endothelial cells could be identified among VE-Cadherin+ and CD45- cells. RESULTS: Lineage tracing by using Cdh5creERt2/Rosa-YFP reporter strategy demonstrated that the CD31-/loVEGFR2lo/intracellular endothelial population was indeed an endovascular progenitor (EVP) of an intermediate CD31intVEGFR2lo/intracellular transit amplifying (TA) and a definitive differentiated (D) CD31hiVEGFR2hi/extracellular population. EVP cells arose from vascular-resident beds that could not be transferred by bone marrow transplantation. Furthermore, EVP displayed progenitor-like status with a high proportion of cells in a quiescent cell cycle phase as assessed in wounds, tumors, and aorta. Only EVP cells and not TA and D cells had self-renewal capacity as demonstrated by colony-forming capacity in limiting dilution and by transplantation in Matrigel plugs in recipient mice. RNA sequencing revealed prominent gene expression differences between EVP and D cells. In particular, EVP cells highly expressed genes related to progenitor function including Sox9, Il33, Egfr, and Pdfgrα. Conversely, D cells highly expressed genes related to differentiated endothelium including Ets1&2, Gata2, Cd31, Vwf, and Notch. The RNA sequencing also pointed to an essential role of the Sox18 transcription factor. The role of SOX18 in the differentiation process was validated by using lineage-tracing experiments based on Sox18CreERt2/Rosa-YFP mice. Besides, in the absence of functional SOX18/SOXF, EVP progenitors were still present, but TA and D populations were significantly reduced. CONCLUSIONS: Our findings support an entirely novel endothelial hierarchy, from EVP to TA to D, as defined by self-renewal, differentiation, and molecular profiling of an endothelial progenitor. This paradigm shift in our understanding of vascular-resident endothelial progenitors in tissue regeneration opens new avenues for better understanding of cardiovascular biology.


Asunto(s)
Células Endoteliales/metabolismo , Células Madre/metabolismo , Animales , Antígenos CD/metabolismo , Aorta/metabolismo , Aorta/patología , Trasplante de Médula Ósea , Cadherinas/metabolismo , Diferenciación Celular , Células Endoteliales/citología , Endotelio Vascular/citología , Femenino , Antígenos Comunes de Leucocito/metabolismo , Ratones , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Placenta/metabolismo , Placenta/patología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Embarazo , Factores de Transcripción SOXF/metabolismo , Células Madre/citología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Heridas y Lesiones/patología , Heridas y Lesiones/terapia
15.
Nucleic Acids Res ; 44(8): 3922-35, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-26939885

RESUMEN

The transcription factor (TF) SOX18 drives lymphatic vessel development in both embryogenesis and tumour-induced neo-lymphangiogenesis. Genetic disruption of Sox18 in a mouse model protects from tumour metastasis and established the SOX18 protein as a molecular target. Here, we report the crystal structure of the SOX18 DNA binding high-mobility group (HMG) box bound to a DNA element regulating Prox1 transcription. The crystals diffracted to 1.75Å presenting the highest resolution structure of a SOX/DNA complex presently available revealing water structure, structural adjustments at the DNA contact interface and non-canonical conformations of the DNA backbone. To explore alternatives to challenging small molecule approaches for targeting the DNA-binding activity of SOX18, we designed a set of five decoys based on modified Prox1-DNA. Four decoys potently inhibited DNA binding of SOX18 in vitro and did not interact with non-SOX TFs. Serum stability, nuclease resistance and thermal denaturation assays demonstrated that a decoy circularized with a hexaethylene glycol linker and terminal phosphorothioate modifications is most stable. This SOX decoy also interfered with the expression of a luciferase reporter under control of a SOX18-dependent VCAM1 promoter in COS7 cells. Collectively, we propose SOX decoys as potential strategy for inhibiting SOX18 activity to disrupt tumour-induced neo-lymphangiogenesis.


Asunto(s)
ADN/química , Proteínas de Homeodominio/genética , Factores de Transcripción SOXF/antagonistas & inhibidores , Factores de Transcripción SOXF/química , Proteínas Supresoras de Tumor/genética , Animales , Células COS , Chlorocebus aethiops , ADN/metabolismo , Regulación de la Expresión Génica , Ratones , Conformación de Ácido Nucleico , Oligonucleótidos , Factores de Transcripción SOX/química , Factores de Transcripción SOX/metabolismo , Factores de Transcripción SOXF/metabolismo , Transcripción Genética
16.
Hum Mol Genet ; 23(5): 1286-97, 2014 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-24163130

RESUMEN

Mutations in SOX18, VEGFC and Vascular Endothelial Growth Factor 3 underlie the hereditary lymphatic disorders hypotrichosis-lymphedema-telangiectasia (HLT), Milroy-like lymphedema and Milroy disease, respectively. Genes responsible for hereditary lymphedema are key regulators of lymphatic vascular development in the embryo. To identify novel modulators of lymphangiogenesis, we used a mouse model of HLT (Ragged Opossum) and performed gene expression profiling of aberrant dermal lymphatic vessels. Expression studies and functional analysis in zebrafish and mice revealed one candidate, ArfGAP with RhoGAP domain, Ankyrin repeat and PH domain 3 (ARAP3), which is down-regulated in HLT mouse lymphatic vessels and necessary for lymphatic vascular development in mice and zebrafish. We position this known regulator of cell behaviour during migration as a mediator of the cellular response to Vegfc signalling in lymphatic endothelial cells in vitro and in vivo. Our data refine common mechanisms that are likely to contribute during both development and the pathogenesis of lymphatic vascular disorders.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Activadoras de GTPasa/genética , Regulación de la Expresión Génica , Hipotricosis/genética , Linfangiogénesis/genética , Linfedema/genética , Telangiectasia/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Movimiento Celular/genética , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Femenino , Proteínas Activadoras de GTPasa/metabolismo , Vasos Linfáticos/metabolismo , Ratones , Ratones Noqueados , Factores de Transcripción SOXF/genética , Factores de Transcripción SOXF/metabolismo , Síndrome , Factor C de Crecimiento Endotelial Vascular/genética , Factor C de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
17.
Blood ; 123(7): 1102-12, 2014 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-24269955

RESUMEN

Vascular endothelial growth factor-D (VEGFD) is a potent pro-lymphangiogenic molecule during tumor growth and is considered a key therapeutic target to modulate metastasis. Despite roles in pathological neo-lymphangiogenesis, the characterization of an endogenous role for VEGFD in vascular development has remained elusive. Here, we used zebrafish to assay for genetic interactions between the Vegf/Vegf-receptor pathway and SoxF transcription factors and identified a specific interaction between Vegfd and Sox18. Double knockdown zebrafish embryos for Sox18/Vegfd and Sox7/Vegfd exhibit defects in arteriovenous differentiation. Supporting this observation, we found that Sox18/Vegfd double but not single knockout mice displayed dramatic vascular development defects. We find that VEGFD-mitogen-activated protein kinase kinase-extracellular signal-regulated kinase signaling modulates SOX18-mediated transcription, functioning at least in part by enhancing nuclear concentration and transcriptional activity in vascular endothelial cells. This work suggests that VEGFD-mediated pathologies include or involve an underlying dysregulation of SOXF-mediated transcriptional networks.


Asunto(s)
Vasos Sanguíneos/embriología , Neovascularización Fisiológica/genética , Factores de Transcripción SOXF/metabolismo , Factor D de Crecimiento Endotelial Vascular/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Embrión de Mamíferos , Embrión no Mamífero , Femenino , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Factores de Transcripción SOXF/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
18.
Dev Biol ; 386(1): 25-33, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24361262

RESUMEN

During embryogenesis, lymphatic endothelial progenitor cells first arise from a subset of blood vascular endothelial cells in the dorsolateral aspects of the cardinal veins. The molecular cues responsible for defining the regionalisation of such a discrete pool of progenitors remain uncharacterised. Here we identify a novel function for CYP26B1, an enzyme known to play a role in tissue morphogenesis by fine-tuning retinoic acid (RA) concentration, in regulating lymphangiogenesis. Cyp26b1-null mice, in which RA levels are elevated, exhibited an increased number of lymphatic endothelial progenitor cells in the cardinal veins, together with hyperplastic, blood filled lymph sacs and hyperplastic dermal lymphatic vessels. Conversely, mice over-expressing Cyp26b1 had hypoplastic lymph sacs and lymphatic vessels. Our data suggest that RA clearance by CYP26B1 in the vicinity of lymphatic endothelial progenitor cells is important for determining the position and size of the progenitor pool specified. Our studies identify a genetic pathway that underpins the architecture of the developing lymphatics and define CYP26B1 as a novel modulator of lymphatic vascular patterning.


Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Regulación del Desarrollo de la Expresión Génica , Linfangiogénesis , Sistema Linfático/embriología , Vasos Linfáticos/metabolismo , Retinoides/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Cruzamientos Genéticos , Células Endoteliales/citología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Fenotipo , Ácido Retinoico 4-Hidroxilasa , Transducción de Señal , Transgenes , Tretinoina/metabolismo
20.
BMC Geriatr ; 15: 63, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-26062790

RESUMEN

BACKGROUND: In the 1990s, epidemiological studies estimated the prevalence of stroke caused by atrial fibrillation (AF) at about 15 %. Given the aging population, there is a rise in the number of AF patients. AF prevention guidelines based on clinical practice and the literature have been published and updated since 2001. Implementation seems to have an impact on the prescription of vitamin K antagonist (VKA). During the last 20 years, few population-based studies have focused on the prevalence of atrial arrhythmia (AA) in patients with stroke. The objective of the present prospective study, using data from 2008, was to evaluate the prevalence of AA (atrial fibrillation/flutter) in patients with stroke and the impact of implementing AF guidelines. METHODS: The prevalence of AA was studied in patients diagnosed with stroke from January 1 to December 31, 2008 in the population-based Stroke Registry of Brest, France (total population, 363,760 according to the 2008 census, with 295,553 aged 15 years or older). Guidelines implementation was assessed in terms of antithrombotic therapy (VKA, antiplatelet agent, none), and the CHADS2 (Congestive heart failure, Hypertension, Age > 75 years, Diabetes mellitus, and prior Stroke or transient ischemic attack). RESULTS: 851 cases of stroke were identified. The prevalence of AA was 31.7 % (n = 264), and increased with age from < 20 % in patients aged 45 to 54 years to nearly 50 % in patients ≥ 85 years. In patients with AA, 231 strokes were ischemic, 28 hemorrhagic and 5 undetermined. At time of stroke, AA was known in 207 patients (78.4 %). 54 of the 152 patients with CHADS2 score ≥ 2 (35.5 %) were treated with VKA; this proportion decreased with age: 50 % between 50 and 74 years, 43.8 % between 75 and 84 years, and 25 % at 85 years and older. CONCLUSION: The prevalence of AA in the population-based Brest Stroke Registry in 2008 was higher than that reported by studies conducted 20 years ago. Despite publication of AF prevention guidelines, VKA prescription and use in elderly patients were significantly low.


Asunto(s)
Fibrilación Atrial/epidemiología , Aleteo Atrial/epidemiología , Sistema de Registros , Accidente Cerebrovascular/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticoagulantes/uso terapéutico , Fibrilación Atrial/complicaciones , Fibrilación Atrial/tratamiento farmacológico , Aleteo Atrial/complicaciones , Aleteo Atrial/tratamiento farmacológico , Femenino , Francia/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Inhibidores de Agregación Plaquetaria/uso terapéutico , Prevalencia , Estudios Prospectivos , Accidente Cerebrovascular/prevención & control , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA