RESUMEN
Small molecules directly targeting the voltage-gated sodium channel (VGSC) NaV1.7 have not been clinically successful. We reported that preventing the addition of a small ubiquitin-like modifier onto the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 function and was antinociceptive in rodent models of neuropathic pain. Here, we discovered a CRMP2 regulatory sequence (CRS) unique to NaV1.7 that is essential for this regulatory coupling. CRMP2 preferentially bound to the NaV1.7 CRS over other NaV isoforms. Substitution of the NaV1.7 CRS with the homologous domains from the other eight VGSC isoforms decreased NaV1.7 currents. A cell-penetrant decoy peptide corresponding to the NaV1.7-CRS reduced NaV1.7 currents and trafficking, decreased presynaptic NaV1.7 expression, reduced spinal CGRP release, and reversed nerve injury-induced mechanical allodynia. Importantly, the NaV1.7-CRS peptide did not produce motor impairment, nor did it alter physiological pain sensation, which is essential for survival. As a proof-of-concept for a NaV1.7 -targeted gene therapy, we packaged a plasmid encoding the NaV1.7-CRS in an AAV virus. Treatment with this virus reduced NaV1.7 function in both rodent and rhesus macaque sensory neurons. This gene therapy reversed and prevented mechanical allodynia in a model of nerve injury and reversed mechanical and cold allodynia in a model of chemotherapy-induced peripheral neuropathy. These findings support the conclusion that the CRS domain is a targetable region for the treatment of chronic neuropathic pain.
Asunto(s)
Dolor Crónico , Neuralgia , Animales , Hiperalgesia/inducido químicamente , Dolor Crónico/genética , Dolor Crónico/terapia , Macaca mulatta/metabolismo , Neuralgia/genética , Neuralgia/terapia , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Ganglios Espinales/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8RESUMEN
The prevalence of many pain conditions often differs between sexes. In addition to such quantitative distinctions, sexual dimorphism may also be qualitative reflecting differences in mechanisms that promote pain in men and women. A major factor that influences the likelihood of pain perception is the threshold for activation of nociceptors. Peripheral nociceptor sensitization has been demonstrated to be clinically relevant in many pain conditions. Whether peripheral nociceptor sensitization can occur in a sexually dimorphic fashion, however, has not been extensively studied. To address this fundamental knowledge gap, we used patch clamp electrophysiology to evaluate the excitability of dorsal root ganglion neurones from male or female rodents, non-human primates, and humans following exposure to putative sensitizing agents. Previous studies from our laboratory, and others, have shown that prolactin promotes female-selective pain responses in rodents. Consistent with these observations, dorsal root ganglion neurones from female, but not male, mice were selectively sensitized by exposure to prolactin. The sensitizing action of prolactin was also confirmed in dorsal root ganglion neurones from a female macaque monkey. Critically, neurones recovered from female, but not male, human donors were also selectively sensitized by prolactin. In the course of studies of sleep and pain, we unexpectedly observed that an orexin antagonist could normalize pain responses in male animals. We found that orexin B produced sensitization of male, but not female, mouse, macaque, and human dorsal root ganglion neurones. Consistent with functional responses, increased prolactin receptor and orexin receptor 2 expression was observed in female and male mouse dorsal root ganglia, respectively. Immunohistochemical interrogation of cultured human sensory neurones and whole dorsal root ganglia also suggested increased prolactin receptor expression in females and orexin receptor 2 expression in males. These data reveal a functional double dissociation of nociceptor sensitization by sex, which is conserved across species and is likely directly relevant to human pain conditions. To our knowledge, this is the first demonstration of functional sexual dimorphism in human sensory neurones. Patient sex is currently not a common consideration for the choice of pain therapy. Precision medicine, based on patient sex could improve therapeutic outcomes by selectively targeting mechanisms promoting pain in women or men. Additional implications of these findings are that the design of clinical trials for pain therapies should consider the proportions of male or female patients enrolled. Lastly, re-examination of selected past failed clinical trials with subgroup analysis by sex may be warranted.
RESUMEN
Nucleoside diphosphate kinases (NDPKs) are crucial elements in a wide array of cellular physiological or pathophysiological processes such as apoptosis, proliferation, or metastasis formation. Among the NDPK isoenzymes, NDPK-B, a cytoplasmic protein, was reported to be associated with several biological membranes such as plasma or endoplasmic reticulum membranes. Using several membrane models (liposomes, lipid monolayers, and supported lipid bilayers) associated with biophysical approaches, we show that lipid membrane binding occurs in a two-step process: first, initiation by a strong electrostatic adsorption process and followed by shallow penetration of the protein within the membrane. The NDPK-B binding leads to a decrease in membrane fluidity and formation of protein patches. The ability of NDPK-B to form microdomains at the membrane level may be related to protein-protein interactions triggered by its association with anionic phospholipids. Such accumulation of NDPK-B would amplify its effects in functional platform formation and protein recruitment at the membrane.
Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Fluidez de la Membrana , Humanos , Nucleósido-Difosfato Quinasa/química , Unión ProteicaRESUMEN
4-Hydroxy-2-nonenal (4-HNE) is a reactive aldehyde and a lipid peroxidation product formed in biological tissues under physiological and pathological conditions. Its concentration increases with oxidative stress and induces deleterious modifications of proteins and membranes. Mitochondrial and cytosolic isoforms of creatine kinase were previously shown to be affected by 4-HNE. In the present study, we analyzed the effect of 4-HNE on mitochondrial creatine kinase, an abundant protein from the mitochondrial intermembrane space with a key role in mitochondrial physiology. We show that this effect is double: 4-HNE induces a step-wise loss of creatine kinase activity together with a fast protein aggregation. Protein-membrane interaction is affected and amyloid-like networks formed on the biomimetic membrane. These fibrils may disturb mitochondrial organisation both at the membrane and in the inter membrane space.
Asunto(s)
Aldehídos/farmacología , Forma Mitocondrial de la Creatina-Quinasa/química , Forma Mitocondrial de la Creatina-Quinasa/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Fosfolípidos/metabolismo , Aldehídos/química , Animales , Activación Enzimática , Peroxidación de Lípido , Mitocondrias , Unión Proteica , Multimerización de Proteína/efectos de los fármacos , Proteínas RecombinantesRESUMEN
Paraneoplastic neurological syndromes arise from autoimmune reactions against nervous system antigens due to a maladaptive immune response to a peripheral cancer. Patients with small cell lung carcinoma or malignant thymoma can develop an autoimmune response against the CV2/collapsin response mediator protein 5 (CRMP5) antigen. For reasons that are not understood, approximately 80% of patients experience painful neuropathies. Here, we investigated the mechanisms underlying anti-CV2/CRMP5 autoantibodies (CV2/CRMP5-Abs)-related pain. We found that patient-derived CV2/CRMP5-Abs can bind to their target in rodent dorsal root ganglia (DRG) and superficial laminae of the spinal cord. CV2/CRMP5-Abs induced DRG neuron hyperexcitability and mechanical hypersensitivity in rats that were abolished by preventing binding to their cognate autoantigen CRMP5. The effect of CV2/CRMP5-Abs on sensory neuron hyperexcitability and mechanical hypersensitivity observed in patients was recapitulated in rats using genetic immunization providing an approach to rapidly identify possible therapeutic choices for treating autoantibody-induced pain including the repurposing of a monoclonal anti-CD20 antibody that selectively deplete B-lymphocytes. These data reveal a previously unknown neuronal mechanism of neuropathic pain in patients with paraneoplastic neurological syndromes resulting directly from CV2/CRMP5-Abs-induced nociceptor excitability. CV2/CRMP5-Abs directly sensitize pain responses by increasing sensory neuron excitability and strategies aiming at either blocking or reducing CV2/CRMP5-Abs can treat pain as a comorbidity in patients with paraneoplastic neurological syndromes.
RESUMEN
Neurodegeneration is a progressive deterioration of neural structures leading to cognitive or motor impairment of the affected patient. There is still no effective therapy for any of the most common neurodegenerative diseases (NDs) such as Alzheimer's or Parkinson's disease. Although NDs exhibit distinct clinical characteristics, many are characterized by the accumulation of misfolded proteins or peptide fragments in the brain and/or spinal cord. The presence of similar inclusion bodies in patients with diverse NDs provides a rationale for developing therapies directed at overlapping disease mechanisms. A novel targeting strategy involves the use of aptamers for therapeutic development. Aptamers are short nucleic acid ligands able to recognize molecular targets with high specificity and high affinity. Despite the fact that several academic groups have shown that aptamers have the potential to be used in therapeutic and diagnostic applications, their clinical translation is still limited. In this study, we describe aptamers that have been developed against proteins relevant to NDs, including prion protein and amyloid beta (Aß), cell surface receptors and other cytoplasmic proteins. This review also describes advances in the application of these aptamers in imaging, protein detection, and protein quantification, and it provides insights about their accelerated clinical use for disease diagnosis and therapy.
Asunto(s)
Aptámeros de Nucleótidos , Priones , Péptidos beta-Amiloides/genética , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Aptámeros de Nucleótidos/uso terapéutico , Humanos , Ligandos , Fragmentos de PéptidosRESUMEN
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no cure or effective treatment in which TAR DNA Binding Protein of 43 kDa (TDP-43) abnormally accumulates into misfolded protein aggregates in affected neurons. It is widely accepted that protein misfolding and aggregation promotes proteotoxic stress. The molecular chaperones are a primary line of defense against proteotoxic stress, and there has been long-standing interest in understanding the relationship between chaperones and aggregated protein in ALS. Of particular interest are the heat shock protein of 70 kDa (Hsp70) family of chaperones. However, defining which of the 13 human Hsp70 isoforms is critical for ALS has presented many challenges. To gain insight into the specific Hsp70 that modulates TDP-43, we investigated the relationship between TDP-43 and the Hsp70s using proximity-dependent biotin identification (BioID) and discovered several Hsp70 isoforms associated with TDP-43 in the nucleus, raising the possibility of an interaction with native TDP-43. We further found that HspA5 bound specifically to the RNA-binding domain of TDP-43 using recombinantly expressed proteins. Moreover, in a Drosophila strain that mimics ALS upon TDP-43 expression, the mRNA levels of the HspA5 homologue (Hsc70.3) were significantly increased. Similarly we observed upregulation of HspA5 in prefrontal cortex neurons from human ALS patients. Finally, overexpression of HspA5 in Drosophila rescued TDP-43-induced toxicity, suggesting that upregulation of HspA5 may have a compensatory role in ALS pathobiology.
Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Chaperón BiP del Retículo Endoplásmico , Proteínas HSP70 de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Chaperonas MolecularesRESUMEN
Tar DNA binding (TDP)-43 proteinopathy, typically described as cytoplasmic accumulation of highly modified and misfolded TDP-43 molecules, is characteristic of several neurodegenerative diseases such as Amyotrophic Lateral Sclerosis (ALS) and limbic-predominant age-related TDP-43 encephalopathy (LATE). TDP-43 proposed proteinopathies include homeostatic imbalance between nuclear and cytoplasmic localization, aggregation of ubiquitinated and hyper-phosphorylated TDP-43, and an increase in protein truncation of cytoplasmic TDP-43. Given the therapeutic interest of targeting TDP-43, this review focuses on the current landscape of strategies, ranging from biologics to small molecules, that directly target TDP-43. Antibodies, peptides and compounds have been designed or found to recognize specific TDP-43 sequences but alleviate TDP-43 toxicity through different mechanisms. While two antibodies described here were able to induce degradation of pathological TDP-43, the peptides and small molecules were primarily designed to reduce aggregation of TDP-43. Furthermore, we discuss promising emerging therapeutic targets.
RESUMEN
RNA targeting has gained traction over the past decade. It has become clear that dysregulation of RNA can be linked to many diseases, leading to a need for new scaffolds recognizing RNA specifically. Long noncoding RNAs are emerging as key controllers of gene expression and potential therapeutic targets. However, traditional targeting methods have overwhelmingly been focused on proteins. In this study, we used a protein computational tool and found several possible targetable pockets in a structurally characterized long noncoding RNA, MALAT1. Screening against those identified pockets revealed several hit compounds. We tested the binding of those compounds to MALAT1 RNA and tRNA as a negative control, using SPR. While several compounds were nonspecific binders, others were able to recognize MALAT1 specifically. One of them, MTC07, has an apparent affinity of 400.2 ± 14.4 µM. Although it has weak affinity, MTC07 is the first compound targeting MALAT1 originating from in silico docking.
RESUMEN
The voltage-gated sodium NaV1.7 channel, critical for sensing pain, has been actively targeted by drug developers; however, there are currently no effective and safe therapies targeting NaV1.7. Here, we tested whether a different approach, indirect NaV1.7 regulation, could have antinociceptive effects in preclinical models. We found that preventing addition of small ubiquitin-like modifier (SUMO) on the NaV1.7-interacting cytosolic collapsin response mediator protein 2 (CRMP2) blocked NaV1.7 functions and had antinociceptive effects in rodents. In silico targeting of the SUMOylation site in CRMP2 (Lys374) identified >200 hits, of which compound 194 exhibited selective in vitro and ex vivo NaV1.7 engagement. Orally administered 194 was not only antinociceptive in preclinical models of acute and chronic pain but also demonstrated synergy alongside other analgesicswithout eliciting addiction, rewarding properties, or neurotoxicity. Analgesia conferred by 194 was opioid receptor dependent. Our results demonstrate that 194 is a first-in-class protein-protein inhibitor that capitalizes on CRMP2-NaV1.7 regulation to deliver safe analgesia in rodents.
Asunto(s)
Dolor Crónico , Canal de Sodio Activado por Voltaje NAV1.7 , Analgésicos/farmacología , Analgésicos/uso terapéutico , Animales , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Roedores/metabolismo , SumoilaciónRESUMEN
[This corrects the article DOI: 10.3389/fnmol.2019.00301.].
RESUMEN
In this study, we targeted the N-terminal domain (NTD) of transactive response (TAR) DNA binding protein (TDP-43), which is implicated in several neurodegenerative diseases. In silico docking of 50K compounds to the NTD domain of TDP-43 identified a small molecule (nTRD22) that is bound to the N-terminal domain. Interestingly, nTRD22 caused allosteric modulation of the RNA binding domain (RRM) of TDP-43, resulting in decreased binding to RNA in vitro. Moreover, incubation of primary motor neurons with nTRD22 induced a reduction of TDP-43 protein levels, similar to TDP-43 RNA binding-deficient mutants and supporting a disruption of TDP-43 binding to RNA. Finally, nTRD22 mitigated motor impairment in a Drosophila model of amyotrophic lateral sclerosis. Our findings provide an exciting way of allosteric modulation of the RNA-binding region of TDP-43 through the N-terminal domain.
Asunto(s)
Regulación Alostérica/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Dominios Proteicos/efectos de los fármacos , ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Sitios de Unión/efectos de los fármacos , Proteínas de Unión al ADN/química , Modelos Animales de Enfermedad , Drosophila , Humanos , Simulación del Acoplamiento Molecular , Bibliotecas de Moléculas Pequeñas/químicaRESUMEN
TAR DNA-binding protein 43 (TDP-43) is a ubiquitously expressed nuclear protein that influences diverse cellular processes by regulating alternative splicing of RNA and microRNA biogenesis. It is also a pathological protein found in sporadic ALS and in the most common subtype of frontotemporal lobar degeneration with ubiquitinated inclusions (FLTD-U). TDP-43 has two tandem RNA-binding domains, RRM1 and RRM2. The NMR structure of TDP-43 was solved in the presence of UG-rich RNA sequences bound to the RRM1 and RRM2 domains. Here we report the backbone assignment of apo TDP-43. The chemical shift (HN, N, C, Cα and Cß) analysis shows the predicted regions of secondary structure are in good agreement with those observed for TDP-43 in complex with RNA. However, our data show that the apo structure of TPD-43 has increased flexibility in the regions that would normally have been used to anchor the RNA bases. The backbone chemical shifts assignments will prove useful in the study of TDP-43 interaction with non-canonical RNA and RRM-binding proteins.
Asunto(s)
Apoproteínas/química , Proteínas de Unión al ADN/química , Resonancia Magnética Nuclear Biomolecular , Motivo de Reconocimiento de ARN , Secuencia de Aminoácidos , Isótopos de Carbono , Humanos , Isótopos de Nitrógeno , Estructura Secundaria de Proteína , ProtonesRESUMEN
Transactive response DNA binding protein (TDP-43) is a key player in neurodegenerative diseases. In this review, we have gathered and presented structural information on the different regions of TDP-43 with high resolution structures available. A thorough understanding of TDP-43 structure, effect of modifications, aggregation and sites of localization is necessary as we develop therapeutic strategies targeting TDP-43 for neurodegenerative diseases. We discuss how different domains as well as post-translational modification may influence TDP-43 overall structure, aggregation and droplet formation. The primary aim of the review is to utilize structural insights as we develop an understanding of the deleterious behavior of TDP-43 and highlight locations of established and proposed post-translation modifications. TDP-43 structure and effect on localization is paralleled by many RNA-binding proteins and this review serves as an example of how structure may be modulated by numerous compounding elements.
RESUMEN
We have previously reported that the microtubule-associated collapsin response mediator protein 2 (CRMP2) is necessary for the expression of chronic pain. CRMP2 achieves this control of nociceptive signaling by virtue of its ability to regulate voltage-gated calcium and sodium channels. To date, however, no drugs exist that target CRMP2. Recently, the small molecule edonerpic maleate (1 -{3-[2-(1-benzothiophen-5-yl)ethoxy]propyl}azetidin-3-ol maleate), a candidate therapeutic for Alzheimer's disease was reported to be a novel CRMP2 binding compound with the potential to decrease its phosphorylation level in cortical tissues in vivo. Here we sought to determine the mechanism of action of edonerpic maleate and test its possible effect in a rodent model of chronic pain. We observed: (i) no binding between human CRMP2 and edonerpic maleate; (ii) edonerpic maleate had no effect on CRMP2 expression and phosphorylation in dorsal root ganglion (DRG) neurons; (iii) edonerpic maleate-decreased calcium but increased sodium current density in DRG neurons; and (iv) edonerpic maleate was ineffective in reversing post-surgical allodynia in male and female mice. Thus, while CRMP2 inhibiting compounds remain a viable strategy for developing new mechanism-based pain inhibitors, edonerpic maleate is an unlikely candidate.
Asunto(s)
Hiperalgesia/tratamiento farmacológico , Maleatos/administración & dosificación , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Tiofenos/administración & dosificación , Animales , Calcio/metabolismo , Evaluación Preclínica de Medicamentos , Femenino , Ganglios Espinales/metabolismo , Humanos , Hiperalgesia/genética , Hiperalgesia/metabolismo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , FosforilaciónRESUMEN
RNA dysregulation likely contributes to disease pathogenesis of amyotrophic lateral sclerosis (ALS) and other neurodegenerative diseases. A pathological form of the transactive response (TAR) DNA binding protein (TDP-43) binds to RNA in stress granules and forms membraneless, amyloid-like TDP-43 aggregates in the cytoplasm of ALS motor neurons. In this study, we hypothesized that by targeting the RNA recognition motif (RRM) domains of TDP-43 that confer a pathogenic interaction between TDP-43 and RNA, motor neuron toxicity could be reduced. In silico docking of 50000 compounds to the RRM domains of TDP-43 identified a small molecule (rTRD01) that (i) bound to TDP-43's RRM1 and RRM2 domains, (ii) partially disrupted TDP-43's interaction with the hexanucleotide RNA repeat of the disease-linked c9orf72 gene, but not with (UG)6 canonical binding sequence of TDP-43, and (iii) improved larval turning, an assay measuring neuromuscular coordination and strength, in an ALS fly model based on the overexpression of mutant TDP-43. Our findings provide an instructive example of a chemical biology approach pivoted to discover small molecules targeting RNA-protein interactions in neurodegenerative diseases.
Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Piperidinas/uso terapéutico , Unión Proteica/efectos de los fármacos , Pirazinas/uso terapéutico , Animales , Secuencia de Bases , Sitios de Unión , Proteínas de Unión al ADN/química , Proteínas de Drosophila/química , Drosophila melanogaster/química , Drosophila melanogaster/efectos de los fármacos , Locomoción/efectos de los fármacos , Simulación del Acoplamiento Molecular , Fármacos Neuroprotectores/metabolismo , Piperidinas/metabolismo , Dominios Proteicos/efectos de los fármacos , Pirazinas/metabolismo , ARN/metabolismo , Bibliotecas de Moléculas Pequeñas/metabolismoRESUMEN
Naringenin (2S)-5,7-dihydroxy-2-(4-hydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one is a natural flavonoid found in fruits from the citrus family. Because (2S)-naringenin is known to racemize, its bioactivity might be related to one or both enantiomers. Computational studies predicted that (2R)-naringenin may act on voltage-gated ion channels, particularly the N-type calcium channel (CaV2.2) and the NaV1.7 sodium channel-both of which are key for pain signaling. Here we set out to identify the possible mechanism of action of naringenin. Naringenin inhibited depolarization-evoked Ca2+ influx in acetylcholine-, ATP-, and capsaicin-responding rat dorsal root ganglion (DRG) neurons. This was corroborated in electrophysiological recordings from DRG neurons. Pharmacological dissection of each of the voltage-gated Ca2+ channels subtypes could not pinpoint any selectivity of naringenin. Instead, naringenin inhibited NaV1.8-dependent and tetrodotoxin (TTX)-resistant while sparing tetrodotoxin sensitive (TTX-S) voltage-gated Na+ channels as evidenced by the lack of further inhibition by the NaV1.8 blocker A-803467. The effects of the natural flavonoid were validated ex vivo in spinal cord slices where naringenin decreased both the frequency and amplitude of sEPSC recorded in neurons within the substantia gelatinosa. The antinociceptive potential of naringenin was evaluated in male and female mice. Naringenin had no effect on the nociceptive thresholds evoked by heat. Naringenin's reversed allodynia was in mouse models of postsurgical and neuropathic pain. Here, driven by a call by the National Center for Complementary and Integrative Health's strategic plan to advance fundamental research into basic biological mechanisms of the action of natural products, we advance the antinociceptive potential of the flavonoid naringenin.
Asunto(s)
Analgésicos/farmacología , Flavanonas/farmacología , Ganglios Espinales/citología , Canal de Sodio Activado por Voltaje NAV1.8/efectos de los fármacos , Nocicepción/efectos de los fármacos , Células Receptoras Sensoriales/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Sodio/metabolismo , Analgésicos/química , Analgésicos/uso terapéutico , Animales , Canales de Calcio/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Flavanonas/química , Flavanonas/metabolismo , Flavanonas/uso terapéutico , Hiperalgesia/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Ratones , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neuralgia/tratamiento farmacológico , Dolor Postoperatorio/tratamiento farmacológico , Conformación Proteica , Mapeo de Interacción de Proteínas , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/clasificación , Células Receptoras Sensoriales/metabolismo , Bloqueadores de los Canales de Sodio/química , Bloqueadores de los Canales de Sodio/uso terapéutico , Organismos Libres de Patógenos Específicos , Relación Estructura-ActividadRESUMEN
Inhibition of voltage-gated calcium (CaV) channels is a potential therapy for many neurological diseases including chronic pain. Neuronal CaV1/CaV2 channels are composed of α, ß, γ and α2δ subunits. The ß subunits of CaV channels are cytoplasmic proteins that increase the surface expression of the pore-forming α subunit of CaV. We targeted the high-affinity protein-protein interface of CaVß's pocket within the CaVα subunit. Structure-based virtual screening of 50,000 small molecule library docked to the ß subunit led to the identification of 2-(3,5-dimethylisoxazol-4-yl)-N-((4-((3-phenylpropyl)amino)quinazolin-2-yl)methyl)acetamide (IPPQ). This small molecule bound to CaVß and inhibited its coupling with N-type voltage-gated calcium (CaV2.2) channels, leading to a reduction in CaV2.2 currents in rat dorsal root ganglion sensory neurons, decreased presynaptic localization of CaV2.2 in vivo, decreased frequency of spontaneous excitatory postsynaptic potentials and miniature excitatory postsynaptic potentials, and inhibited release of the nociceptive neurotransmitter calcitonin gene-related peptide from spinal cord. IPPQ did not target opioid receptors nor did it engage inhibitory G protein-coupled receptor signaling. IPPQ was antinociceptive in naive animals and reversed allodynia and hyperalgesia in models of acute (postsurgical) and neuropathic (spinal nerve ligation, chemotherapy- and gp120-induced peripheral neuropathy, and genome-edited neuropathy) pain. IPPQ did not cause akinesia or motor impairment, a common adverse effect of CaV2.2 targeting drugs, when injected into the brain. IPPQ, a quinazoline analog, represents a novel class of CaV2.2-targeting compounds that may serve as probes to interrogate CaVα-CaVß function and ultimately be developed as a nonopioid therapeutic for chronic pain.
Asunto(s)
Analgésicos/uso terapéutico , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo N/efectos de los fármacos , Canales de Calcio/efectos de los fármacos , Quinazolinas/uso terapéutico , Animales , Células CHO , Péptido Relacionado con Gen de Calcitonina/metabolismo , Simulación por Computador , Cricetulus , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/tratamiento farmacológico , Masculino , Neuralgia/tratamiento farmacológico , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismoRESUMEN
Drug discovery campaigns directly targeting the voltage-gated sodium channel NaV1.7, a highly prized target in chronic pain, have not yet been clinically successful. In a differentiated approach, we demonstrated allosteric control of trafficking and activity of NaV1.7 by prevention of SUMOylation of collapsin response mediator protein 2 (CRMP2). Spinal administration of a SUMOylation incompetent CRMP2 (CRMP2 K374A) significantly attenuated pain behavior in the spared nerve injury (SNI) model of neuropathic pain, underscoring the importance of SUMOylation of CRMP2 as a pathologic event in chronic pain. Using a rational design strategy, we identified a heptamer peptide harboring CRMP2's SUMO motif that disrupted the CRMP2-Ubc9 interaction, inhibited CRMP2 SUMOylation, inhibited NaV1.7 membrane trafficking, and specifically inhibited NaV1.7 sodium influx in sensory neurons. Importantly, this peptide reversed nerve injury-induced thermal and mechanical hypersensitivity in the SNI model, supporting the practicality of discovering pain drugs by indirectly targeting NaV1.7 via prevention of CRMP2 SUMOylation. Here, our goal was to map the unique interface between CRMP2 and Ubc9, the E2 SUMO conjugating enzyme. Using computational and biophysical approaches, we demonstrate the enzyme/substrate nature of Ubc9/CRMP2 binding and identify hot spots on CRMP2 that may form the basis of future drug discovery campaigns disrupting the CRMP2-Ubc9 interaction to recapitulate allosteric regulation of NaV1.7 for pain relief.
Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Mapas de Interacción de Proteínas , Enzimas Ubiquitina-Conjugadoras/metabolismo , Regulación Alostérica , Humanos , Péptidos y Proteínas de Señalización Intercelular/química , Péptidos y Proteínas de Señalización Intercelular/genética , Canal de Sodio Activado por Voltaje NAV1.7/química , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Enzimas Ubiquitina-Conjugadoras/química , Enzimas Ubiquitina-Conjugadoras/genéticaRESUMEN
We previously reported that destruction of the small ubiquitin-like modifier (SUMO) modification site in the axonal collapsin response mediator protein 2 (CRMP2) was sufficient to selectively decrease trafficking of the voltage-gated sodium channel NaV1.7 and reverse neuropathic pain. Here, we further interrogate the biophysical nature of the interaction between CRMP2 and the SUMOylation machinery, and test the hypothesis that a rationally designed CRMP2 SUMOylation motif (CSM) peptide can interrupt E2 SUMO-conjugating enzyme Ubc9-dependent modification of CRMP2 leading to a similar suppression of NaV1.7 currents. Microscale thermophoresis and amplified luminescent proximity homogeneous alpha assay revealed a low micromolar binding affinity between CRMP2 and Ubc9. A heptamer peptide harboring CRMP2's SUMO motif, also bound with similar affinity to Ubc9, disrupted the CRMP2-Ubc9 interaction in a concentration-dependent manner. Importantly, incubation of a tat-conjugated cell-penetrating peptide (t-CSM) decreased sodium currents, predominantly NaV1.7, in a model neuronal cell line. Dialysis of t-CSM peptide reduced CRMP2 SUMOylation and blocked surface trafficking of NaV1.7 in rat sensory neurons. Fluorescence dye-based imaging in rat sensory neurons demonstrated inhibition of sodium influx in the presence of t-CSM peptide; by contrast, calcium influx was unaffected. Finally, t-CSM effectively reversed persistent mechanical and thermal hypersensitivity induced by a spinal nerve injury, a model of neuropathic pain. Structural modeling has now identified a pocket-harboring CRMP2's SUMOylation motif that, when targeted through computational screening of ligands/molecules, is expected to identify small molecules that will biochemically and functionally target CRMP2's SUMOylation to reduce NaV1.7 currents and reverse neuropathic pain.