RESUMEN
Giara and Sarcidano are 2 of the 15 extant native Italian horse breeds with limited dispersal capability that originated from a larger number of individuals. The 2 breeds live in two distinct isolated locations on the island of Sardinia. To determine the genetic structure and evolutionary history of these 2 Sardinian breeds, the first hypervariable segment of the mitochondrial DNA (mtDNA) was sequenced and analyzed in 40 Giara and Sarcidano horses and compared with publicly available mtDNA data from 43 Old World breeds. Four different analyses, including genetic distance, analysis of molecular variance, haplotype sharing, and clustering methods, were used to study the genetic relationships between the Sardinian and other horse breeds. The analyses yielded similar results, and the FST values indicated that a high percentage of the total genetic variation was explained by between-breed differences. Consistent with their distinct phenotypes and geographic isolation, the two Sardinian breeds were shown to consist of 2 distinct gene pools that had no gene flow between them. Giara horses were clearly separated from the other breeds examined and showed traces of ancient separation from horses of other breeds that share the same mitochondrial lineage. On the other hand, the data from the Sarcidano horses fit well with variation among breeds from the Iberian Peninsula and North-West Europe: genetic relationships among Sarcidano and the other breeds are consistent with the documented history of this breed.
Asunto(s)
ADN Mitocondrial , Caballos/genética , Animales , Cruzamiento , Análisis por Conglomerados , Frecuencia de los Genes , Variación Genética , Genética de Población , Haplotipos , ItaliaRESUMEN
Binary polymorphisms associated with the non-recombining region of the human Y chromosome (NRY) preserve the paternal genetic legacy of our species that has persisted to the present, permitting inference of human evolution, population affinity and demographic history. We used denaturing high-performance liquid chromatography (DHPLC; ref. 2) to identify 160 of the 166 bi-allelic and 1 tri-allelic site that formed a parsimonious genealogy of 116 haplotypes, several of which display distinct population affinities based on the analysis of 1062 globally representative individuals. A minority of contemporary East Africans and Khoisan represent the descendants of the most ancestral patrilineages of anatomically modern humans that left Africa between 35,000 and 89,000 years ago.
Asunto(s)
Etnicidad/genética , Evolución Molecular , Hominidae/genética , Filogenia , Cromosoma Y/genética , África , Animales , Cromatografía Líquida de Alta Presión , Haplotipos/genética , Humanos , Masculino , Modelos Genéticos , Datos de Secuencia Molecular , Desnaturalización de Ácido Nucleico , Análisis de Secuencia de ADN , Especificidad de la EspecieRESUMEN
This study provides data on the genetic structuring of the pipefish Syngnathus abaster in the western Mediterranean and Adriatic Seas. A total of 109 specimens were collected in brackish-water biotopes. The control region and three other regions of the mitochondrial genome were analysed. The most relevant result was the high genetic structuring found by Bayesian inference (BI), maximum likelihood (ML) and network analyses, which were consistent in showing three well-separated clusters of S. abaster populations. Furthermore, BI and ML did not support the monophyly of the taxon S. abaster. These results suggest the occurrence of a species complex in the study area, whose differentiation may have occurred since the Pleistocene. The results also show a very high genetic variability at the inter-population level, with no shared haplotypes among sites. Evolutionary forces due to the fragmented nature of the brackish-water habitats may account for the high genetic divergence found among the groups and populations. Finally, although dispersal by rafting over long distances may occasionally occur, this study suggests linear stepping-stone model of colonization to be most likely. The complexity of the results obtained suggests that further studies are needed to elucidate the phylogeny of S. abaster.
Asunto(s)
ADN Mitocondrial/genética , Evolución Molecular , Variación Genética , Filogenia , Smegmamorpha/genética , Animales , Teorema de Bayes , Haplotipos , Funciones de Verosimilitud , Mar Mediterráneo , Análisis de Secuencia de ADNRESUMEN
A genetic perspective of human history in Europe was derived from 22 binary markers of the nonrecombining Y chromosome (NRY). Ten lineages account for >95% of the 1007 European Y chromosomes studied. Geographic distribution and age estimates of alleles are compatible with two Paleolithic and one Neolithic migratory episode that have contributed to the modern European gene pool. A significant correlation between the NRY haplotype data and principal components based on 95 protein markers was observed, indicating the effectiveness of NRY binary polymorphisms in the characterization of human population composition and history.
Asunto(s)
Pool de Genes , Genética de Población , Cromosoma Y , Alelos , Antropología Física , Clima , ADN Mitocondrial/genética , Emigración e Inmigración , Europa (Continente) , Femenino , Marcadores Genéticos , Historia Antigua , Humanos , Masculino , Medio OrienteRESUMEN
Mitochondrial DNA (mtDNA) sequence variation was examined in Finns, Swedes and Tuscans by PCR amplification and restriction analysis. About 99% of the mtDNAs were subsumed within 10 mtDNA haplogroups (H, I, J, K, M, T, U, V, W, and X) suggesting that the identified haplogroups could encompass virtually all European mtDNAs. Because both hypervariable segments of the mtDNA control region were previously sequenced in the Tuscan samples, the mtDNA haplogroups and control region sequences could be compared. Using a combination of haplogroup-specific restriction site changes and control region nucleotide substitutions, the distribution of the haplogroups was surveyed through the published restriction site polymorphism and control region sequence data of Caucasoids. This supported the conclusion that most haplogroups observed in Europe are Caucasoid-specific, and that at least some of them occur at varying frequencies in different Caucasoid populations. The classification of almost all European mtDNA variation in a number of well defined haplogroups could provide additional insights about the origin and relationships of Caucasoid populations and the process of human colonization of Europe, and is valuable for the definition of the role played by mtDNA backgrounds in the expression of pathological mtDNA mutations.
Asunto(s)
ADN Mitocondrial/análisis , Genética de Población , Secuencia de Bases , ADN Mitocondrial/clasificación , Europa (Continente) , Haplotipos , Humanos , Datos de Secuencia Molecular , Polimorfismo GenéticoRESUMEN
The use of ancient DNA techniques in human studies has been hampered by problems of contamination with modern human DNA. The main problem has been that the object of study belongs to the same species as the observer, and the complete elimination of the contamination risk is seemingly unlikely. Contamination has even been detected in the most specialized laboratories in this field. In these kinds of studies it is therefore very important to detect contamination and to distinguish contaminants from authentic results. Here, we report the use of a strategy to authenticate the identity of ancient mitochondrial DNA (mtDNA), based on the previously established relationship between D-loop sequence substitutions and haplogroup-specific restriction site changes. Forty-four individuals from a 16th-century necropolis were analyzed, from which 28 control region sequences were obtained. These sequences were preclassified into haplogroups, according to the observed motifs. Subsequently, the DNA extracts from which the sequences were obtained, along with independent extracts of subsets of the same individuals, were subjected to restriction fragment length polymorphism (RFLP) analysis to compare and corroborate the results. Using this approach, 24 sequences were authenticated, while two were discarded because of result mismatches. The final distribution of the haplogroups in the sample, and the differences in the sequences, are two additional criteria of authentication.
Asunto(s)
Dermatoglifia del ADN/métodos , ADN Mitocondrial/historia , Antropología Forense/métodos , Péptidos Cíclicos/genética , Péptidos Cíclicos/historia , Análisis de Secuencia de ADN/métodos , Adulto , Sustitución de Aminoácidos/genética , ADN Mitocondrial/genética , Femenino , Antropología Forense/normas , Haplotipos , Historia del Siglo XV , Historia del Siglo XVI , Humanos , Masculino , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Mapeo Restrictivo , Análisis de Secuencia de ADN/normas , España , Manejo de Especímenes/normas , DienteRESUMEN
The control region of mitochondrial DNA has been widely studied in various human populations. This paper reports sequence data for hypervariable segments 1 and 2 of the control region from a population from southern Tuscany (Italy). The results confirm the high variability of the control region, with 43 different haplotypes in 49 individuals sampled. The comparison of this set of data with other European populations allows the reconstruction of the population history of Tuscany. Independent approaches, such as the estimation of haplotype diversity, mean pairwise differences, genetic distances and discriminant analysis, place the Tuscan sample in an intermediate position between sequences from culturally or geographically isolated regions of Europe (Sardinia, the Basque Country, Britain) and those from the Middle East. In spite of the remarkable genetic homogeneity in Europe, a degree of variability is shown by local European populations and homogeneity increases with the relative isolation of the population. The pattern of mitochondrial variation in Tuscany indicates the persistence of an ancient European component subsequently enriched by migrational waves, possibly from the Middle East.
Asunto(s)
ADN Mitocondrial/genética , Variación Genética , Haplotipos , Secuencia de Bases , Simulación por Computador , ADN Mitocondrial/análisis , ADN Mitocondrial/química , Europa (Continente)/etnología , Humanos , Italia/etnología , Medio Oriente/etnología , Modelos Genéticos , Datos de Secuencia MolecularRESUMEN
Mitochondrial DNA (mtDNA) polymorphisms were analyzed by polymerase chain reaction amplification and haplogroup-specific restriction screening in populations from Corsica and Sardinia. These included 56 individuals from the area of Corte, central Corsica (France), 51 individuals from Gallura, northern Sardinia (Italy), and 45 individuals from Barbagia, central Sardinia. The screening revealed that about 95% of mtDNAs could be grouped in 8 of the 9 European haplogroups, including H-K, T-V, and X. Our results confirmed that these haplogroups encompass virtually all the mitochondrial lineages present in Europe and can be detected in both northern and southern European populations. We also discovered 2 restriction sites (-73 Alw441 and +75 SphI) that allow the detection of informative nucleotide changes in the second hypervariable segment of the control region, which help to detect the haplogroup identity of mtDNAs without requiring further DNA sequencing. Haplogroup H was the most common mtDNA lineage in this sample, reaching frequencies from about 40% in Corsican and Gallurese populations, to about 65% in the Barbagian population. Haplogroup V, possibly originating in the Iberian peninsula, was found only in the central Sardinian sample. Of the 5 Corsican mtDNAs belonging to the haplogroup T, 4 had a restriction fragment length polymorphism found only in this population. It seems that this mutation originated in Corsica and has had time to spread in the area, since the maternal grandmothers of the subjects came from different villages of the island. The sample from central Sardinia shows a remarkable discontinuity with those from the northern part of the island and from Corsica. Gallura and Corsica seem to have undergone a more recent peopling event, possibly related to the arrival of new mitochondrial variability from continental Italy, while Barbagia has apparently maintained more archaic haplotypes.
Asunto(s)
ADN Mitocondrial/genética , Frecuencia de los Genes/genética , Variación Genética/genética , Haplotipos/genética , Polimorfismo de Longitud del Fragmento de Restricción , Regiones Determinantes de Complementariedad/genética , Emigración e Inmigración/estadística & datos numéricos , Femenino , Francia , Humanos , Masculino , Mutación/genética , Reacción en Cadena de la Polimerasa , Mapeo Restrictivo , SiciliaRESUMEN
Temporal changes in the matrimonial structure of four Sardinian populations (Bitti, Lula, Lodè and Gavoi) have been studied. The endogamy rates and the average marriage distances indicate that the four villages experienced a long period of isolation. Only in recent decades endogamous marriages have fallen shortly. The trends of marital isonymy and inbreeding, evaluated both from isonymy and dispensation for consanguineous marriages, are similar to those of endogamy. The kinship values between pairs of populations show some preferential relationship (Bitti-Lodè, Lodè-Lula) and an evident differentiation between Gavoi and Bitti. The results also indicate that the values of kinship are not associated with the geographic distances. The possible impact of the matrimonial structure on the genetic structure and the relationships among the studied populations will be examined in further investigations, in which the genetic markers will be considered.
Asunto(s)
Consanguinidad , Etnicidad/genética , Pool de Genes , Heterogeneidad Genética , Adulto , Femenino , Marcadores Genéticos/genética , Genética de Población , Humanos , Italia , Masculino , Distancia PsicológicaRESUMEN
The geographical distribution of 49 mtDNA sequences from 22 localities in Southern Tuscany, Italy, was studied by molecular analysis of variance, by a new spatial autocorrelation statistic specifically designed for sequence data and by reconstructing genealogies of haplotypes. All these methods indicated a high homogeneity of populations. Nevertheless, genetic variability showed significant departure from equilibrium expectations, in agreement with the predicted effects of a population expansion. We suggest that a past population expansion that was probably associated with a migrational wave and with local gene flow between localities prevented spatial structuring in Southern Tuscany.
Asunto(s)
ADN Mitocondrial/genética , Análisis de Varianza , Emigración e Inmigración , Evolución Molecular , Variación Genética , Genética de Población , Haplotipos , Humanos , ItaliaRESUMEN
An informative set of biallelic polymorphisms was used to study the structure of Y-chromosome variability in a sample from the Mediterranean islands of Corsica and Sicily, and compared with data on Sardinia to gain insights into the ethnogenesis of these island populations. The results were interpreted in a broader Mediterranean context by including in the analysis neighboring populations previously studied with the same methodology. All samples studied were enclosed in the comparable spectrum of European Y-chromosome variability. Pronounced differences were observed between the islands as well as in the percentages of haplotypes previously shown to have distinctive patterns of continental phylogeography. Approximately 60% of the Sicilian haplotypes are also prevalent in Southern Italy and Greece. Conversely, the Corsican sample had elevated levels of alternative haplotypes common in Northern Italy. Sardinia showed a haplotype ratio similar to that observed in Corsica, but with a remarkable difference in the presence of a lineage defined by marker M26, which approaches 35% in Sardinia but seems absent in Corsica. Although geographically adjacent, the data suggest different colonization histories and a minimal amount of recent gene flow between them. Our results identify possible ancestral continental sources of the various island populations and underscore the influence of founder effect and genetic drift. The Y-chromosome data are consistent with comparable mtDNA data at the RFLP haplogroup level of resolution, as well as linguistic and historic knowledge.
Asunto(s)
Cromosomas Humanos Y/genética , Genética de Población , Haplotipos , Filogenia , Francia , Humanos , Italia , Masculino , Islas del Mediterráneo , SiciliaRESUMEN
Mitochondrial HVS-I sequences from 10,365 subjects belonging to 56 populations/geographical regions of western Eurasia and northern Africa were first surveyed for the presence of the T-->C transition at nucleotide position 16298, a mutation which has previously been shown to characterize haplogroup V mtDNAs. All mtDNAs with this mutation were then screened for a number of diagnostic RFLP sites, revealing two major subsets of mtDNAs. One is haplogroup V proper, and the other has been termed "pre*V," since it predates V phylogenetically. The rather uncommon pre*V tends to be scattered throughout Europe (and northwestern Africa), whereas V attains two peaks of frequency: one situated in southwestern Europe and one in the Saami of northern Scandinavia. Geographical distributions and ages support the scenario that pre*V originated in Europe before the Last Glacial Maximum (LGM), whereas the more recently derived haplogroup V arose in a southwestern European refugium soon after the LGM. The arrival of V in eastern/central Europe, however, occurred much later, possibly with (post-)Neolithic contacts. The distribution of haplogroup V mtDNAs in modern European populations would thus, at least in part, reflect the pattern of postglacial human recolonization from that refugium, affecting even the Saami. Overall, the present study shows that the dissection of mtDNA variation into small and well-defined evolutionary units is an essential step in the identification of spatial frequency patterns. Mass screening of a few markers identified using complete mtDNA sequences promises to be an efficient strategy for inferring features of human prehistory.