Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Development ; 146(14)2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358536

RESUMEN

In human, mutations of the protocadherins FAT4 and DCHS1 result in Van Maldergem syndrome, which is characterised, in part, by craniofacial abnormalities. Here, we analyse the role of Dchs1-Fat4 signalling during osteoblast differentiation in mouse. We show that Fat4 and Dchs1 mutants mimic the craniofacial phenotype of the human syndrome and that Dchs1-Fat4 signalling is essential for osteoblast differentiation. In Dchs1/Fat4 mutants, proliferation of osteoprogenitors is increased and osteoblast differentiation is delayed. We show that loss of Dchs1-Fat4 signalling is linked to increased Yap-Tead activity and that Yap is expressed and required for proliferation in osteoprogenitors. In contrast, Taz is expressed in more-committed Runx2-expressing osteoblasts, Taz does not regulate osteoblast proliferation and Taz-Tead activity is unaffected in Dchs1/Fat4 mutants. Finally, we show that Yap and Taz differentially regulate the transcriptional activity of Runx2, and that the activity of Yap-Runx2 and Taz-Runx2 complexes is altered in Dchs1/Fat4 mutant osteoblasts. In conclusion, these data identify Dchs1-Fat4 as a signalling pathway in osteoblast differentiation, reveal its crucial role within the early Runx2 progenitors, and identify distinct requirements for Yap and Taz during osteoblast differentiation.


Asunto(s)
Cadherinas/fisiología , Osteoblastos/fisiología , Osteogénesis/genética , Anomalías Múltiples/genética , Anomalías Múltiples/patología , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Células Cultivadas , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos , Femenino , Deformidades Congénitas del Pie/genética , Deformidades Congénitas del Pie/patología , Deformidades Congénitas de la Mano/genética , Deformidades Congénitas de la Mano/patología , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Inestabilidad de la Articulación/genética , Inestabilidad de la Articulación/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Transducción de Señal/genética
2.
Dev Dyn ; 250(3): 414-449, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33314394

RESUMEN

Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load-bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair.


Asunto(s)
Huesos/embriología , Diferenciación Celular , Condrocitos/metabolismo , Condrogénesis , Osteoblastos/metabolismo , Osteogénesis/fisiología , Animales , Humanos
3.
Development ; 143(13): 2367-75, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27381226

RESUMEN

The protocadherins Fat4 and Dchs1 act as a receptor-ligand pair to regulate many developmental processes in mice and humans, including development of the vertebrae. Based on conservation of function between Drosophila and mammals, Fat4-Dchs1 signalling has been proposed to regulate planar cell polarity (PCP) and activity of the Hippo effectors Yap and Taz, which regulate cell proliferation, survival and differentiation. There is strong evidence for Fat regulation of PCP in mammals but the link with the Hippo pathway is unclear. In Fat4(-/-) and Dchs1(-/-) mice, many vertebrae are split along the midline and fused across the anterior-posterior axis, suggesting that these defects might arise due to altered cell polarity and/or changes in cell proliferation/differentiation. We show that the somite and sclerotome are specified appropriately, the transcriptional network that drives early chondrogenesis is intact, and that cell polarity within the sclerotome is unperturbed. We find that the key defect in Fat4 and Dchs1 mutant mice is decreased proliferation in the early sclerotome. This results in fewer chondrogenic cells within the developing vertebral body, which fail to condense appropriately along the midline. Analysis of Fat4;Yap and Fat4;Taz double mutants, and expression of their transcriptional target Ctgf, indicates that Fat4-Dchs1 regulates vertebral development independently of Yap and Taz. Thus, we have identified a new pathway crucial for the development of the vertebrae and our data indicate that novel mechanisms of Fat4-Dchs1 signalling have evolved to control cell proliferation within the developing vertebrae.


Asunto(s)
Cadherinas/metabolismo , Transducción de Señal , Columna Vertebral/citología , Columna Vertebral/embriología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular , Polaridad Celular , Proliferación Celular , Ratones Mutantes , Morfogénesis , Mutación/genética , Fosfoproteínas/metabolismo , Columna Vertebral/metabolismo , Transactivadores , Proteínas Señalizadoras YAP
4.
Cereb Cortex ; 28(6): 2192-2206, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29668850

RESUMEN

Truncating CHD8 mutations are amongst the highest confidence risk factors for autism spectrum disorder (ASD) identified to date. Here, we report that Chd8 heterozygous mice display increased brain size, motor delay, hypertelorism, pronounced hypoactivity, and anomalous responses to social stimuli. Whereas gene expression in the neocortex is only mildly affected at midgestation, over 600 genes are differentially expressed in the early postnatal neocortex. Genes involved in cell adhesion and axon guidance are particularly prominent amongst the downregulated transcripts. Resting-state functional MRI identified increased synchronized activity in cortico-hippocampal and auditory-parietal networks in Chd8 heterozygous mutant mice, implicating altered connectivity as a potential mechanism underlying the behavioral phenotypes. Together, these data suggest that altered brain growth and diminished expression of important neurodevelopmental genes that regulate long-range brain wiring are followed by distinctive anomalies in functional brain connectivity in Chd8+/- mice. Human imaging studies have reported altered functional connectivity in ASD patients, with long-range under-connectivity seemingly more frequent. Our data suggest that CHD8 haploinsufficiency represents a specific subtype of ASD where neuropsychiatric symptoms are underpinned by long-range over-connectivity.


Asunto(s)
Encéfalo/fisiopatología , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica/genética , Vías Nerviosas/fisiopatología , Animales , Trastorno del Espectro Autista/genética , Modelos Animales de Enfermedad , Haploinsuficiencia , Ratones , Ratones Noqueados , Neocórtex/metabolismo , Transcriptoma
5.
Development ; 142(15): 2574-85, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26116666

RESUMEN

Formation of the kidney requires reciprocal signaling among the ureteric tubules, cap mesenchyme and surrounding stromal mesenchyme to orchestrate complex morphogenetic events. The protocadherin Fat4 influences signaling from stromal to cap mesenchyme cells to regulate their differentiation into nephrons. Here, we characterize the role of a putative binding partner of Fat4, the protocadherin Dchs1. Mutation of Dchs1 in mice leads to increased numbers of cap mesenchyme cells, which are abnormally arranged around the ureteric bud tips, and impairment of nephron morphogenesis. Mutation of Dchs1 also reduces branching of the ureteric bud and impairs differentiation of ureteric bud tip cells into trunk cells. Genetically, Dchs1 is required specifically within cap mesenchyme cells. The similarity of Dchs1 phenotypes to stromal-less kidneys and to those of Fat4 mutants implicates Dchs1 in Fat4-dependent stroma-to-cap mesenchyme signaling. Antibody staining of genetic mosaics reveals that Dchs1 protein localization is polarized within cap mesenchyme cells, where it accumulates at the interface with stromal cells, implying that it interacts directly with a stromal protein. Our observations identify a role for Fat4 and Dchs1 in signaling between cell layers, implicate Dchs1 as a Fat4 receptor for stromal signaling that is essential for kidney development, and establish that vertebrate Dchs1 can be molecularly polarized in vivo.


Asunto(s)
Cadherinas/metabolismo , Riñón/embriología , Células Madre Mesenquimatosas/fisiología , Morfogénesis/fisiología , Transducción de Señal/fisiología , Animales , Cadherinas/genética , Galactósidos , Técnicas Histológicas , Procesamiento de Imagen Asistido por Computador , Indoles , Ratones , Microscopía Confocal , Mutación/genética , Nefronas/embriología , Uréter/embriología
6.
Arterioscler Thromb Vasc Biol ; 37(9): 1732-1735, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28705793

RESUMEN

OBJECTIVE: The purpose of this study was to investigate the role of Fat4 and Dachsous1 signaling in the lymphatic vasculature. APPROACH AND RESULTS: Phenotypic analysis of the lymphatic vasculature was performed in mice lacking functional Fat4 or Dachsous1. The overall architecture of lymphatic vasculature is unaltered, yet both genes are specifically required for lymphatic valve morphogenesis. Valve endothelial cells (Prox1high [prospero homeobox protein 1] cells) are disoriented and failed to form proper valve leaflets. Using Lifeact-GFP (green fluorescent protein) mice, we revealed that valve endothelial cells display prominent actin polymerization. Finally, we showed the polarized recruitment of Dachsous1 to membrane protrusions and cellular junctions of valve endothelial cells in vivo and in vitro. CONCLUSIONS: Our data demonstrate that Fat4 and Dachsous1 are critical regulators of valve morphogenesis. This study highlights that valve defects may contribute to lymphedema in Hennekam syndrome caused by Fat4 mutations.


Asunto(s)
Cadherinas/metabolismo , Movimiento Celular , Células Endoteliales/metabolismo , Endotelio Linfático/metabolismo , Linfangiogénesis , Vasos Linfáticos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animales , Cadherinas/deficiencia , Cadherinas/genética , Células Cultivadas , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/metabolismo , Anomalías Craneofaciales/patología , Células Endoteliales/patología , Endotelio Linfático/patología , Técnica del Anticuerpo Fluorescente , Predisposición Genética a la Enfermedad , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/genética , Humanos , Linfangiectasia Intestinal/genética , Linfangiectasia Intestinal/metabolismo , Linfangiectasia Intestinal/patología , Vasos Linfáticos/patología , Linfedema/genética , Linfedema/metabolismo , Linfedema/patología , Ratones Noqueados , Mutación , Fenotipo , Multimerización de Proteína , Transducción de Señal , Transfección , Proteínas Supresoras de Tumor/genética
9.
Dev Dyn ; 245(9): 947-62, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27264541

RESUMEN

BACKGROUND: Lineage tracing has shown that most of the facial skeleton is derived from cranial neural crest cells. However, the local signals that influence postmigratory, neural crest-derived mesenchyme also play a major role in patterning the skeleton. Here, we study the role of BMP signaling in regulating the fate of chondro-osteoprogenitor cells in the face. RESULTS: A single Noggin-soaked bead inserted into stage 15 chicken embryos induced an ectopic cartilage resembling the interorbital septum within the palate and other midline structures. In contrast, the same treatment in stage 20 embryos caused a loss of bones. The molecular basis for the stage-specific response to Noggin lay in the simultaneous up-regulation of SOX9 and downregulation of RUNX2 in the maxillary mesenchyme, increased cell adhesiveness as shown by N-cadherin induction around the beads and increased RA pathway gene expression. None of these changes were observed in stage 20 embryos. CONCLUSIONS: These experiments demonstrate how slight changes in expression of growth factors such as BMPs could lead to gain or loss of cartilage in the upper jaw during vertebrate evolution. In addition, BMPs have at least two roles: one in patterning the skull and another in regulating the skeletogenic fates of neural crest-derived mesenchyme. Developmental Dynamics 245:947-962, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Mesodermo/citología , Mesodermo/fisiología , Células Madre/citología , Células Madre/fisiología , Animales , Proteínas Morfogenéticas Óseas/genética , Proteínas Portadoras/farmacología , Embrión de Pollo , Cara/embriología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Mesodermo/metabolismo , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Transducción de Señal/efectos de los fármacos , Células Madre/metabolismo
10.
Development ; 138(5): 947-57, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21303848

RESUMEN

The Drosophila Dachsous and Fat proteins function as ligand and receptor, respectively, for an intercellular signaling pathway that regulates Hippo signaling and planar cell polarity. Although gene-targeted mutations in two mammalian Fat genes have been described, whether mammals have a Fat signaling pathway equivalent to that in Drosophila, and what its biological functions might be, have remained unclear. Here, we describe a gene-targeted mutation in a murine Dachsous homolog, Dchs1. Analysis of the phenotypes of Dchs1 mutant mice and comparisons with Fat4 mutant mice identify requirements for these genes in multiple organs, including the ear, kidney, skeleton, intestine, heart and lung. Dchs1 and Fat4 single mutants and Dchs1 Fat4 double mutants have similar phenotypes throughout the body. In some cases, these phenotypes suggest that Dchs1-Fat4 signaling influences planar cell polarity. In addition to the appearance of cysts in newborn kidneys, we also identify and characterize a requirement for Dchs1 and Fat4 in growth, branching and cell survival during early kidney development. Dchs1 and Fat4 are predominantly expressed in mesenchymal cells in multiple organs, and mutation of either gene increases protein staining for the other. Our analysis implies that Dchs1 and Fat4 function as a ligand-receptor pair during murine development, and identifies novel requirements for Dchs1-Fat4 signaling in multiple organs.


Asunto(s)
Cadherinas/genética , Organogénesis/genética , Transducción de Señal/genética , Animales , Cadherinas/deficiencia , Cadherinas/metabolismo , Polaridad Celular/genética , Crecimiento y Desarrollo , Riñón/crecimiento & desarrollo , Ratones , Ratones Mutantes , Transducción de Señal/fisiología
11.
Dev Biol ; 337(2): 211-9, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-19850024

RESUMEN

Wnt signaling has been implicated in somite, limb, and branchial arch myogenesis but the mechanisms and roles are not clear. We now show that Wnt signaling via Lef1 acts to regulate the number of premyogenic cells in somites but does not regulate myogenic initiation in the limb bud or maintenance in the first or second branchial arch. We have also analysed the function and regulation of a putative downstream transcriptional target of canonical Wnt signaling, Pitx2. We show that loss-of-function of Pitx2 decreases the number of myogenic cells in the somite, whereas overexpression increases myocyte number particularly in the epaxial region of the myotome. Increased numbers of mitotic cells were observed following overexpression of Pitx2 or an activated form of Lef1, suggesting an effect on cell proliferation. In addition, we show that Pitx2 expression is regulated by canonical Wnt signaling in the epaxial somite and second branchial arch, but not in the limb or the first branchial arch. These results suggest that Wnt/Lef1 signaling regulates epaxial myogenesis via Pitx2 but that this link is uncoupled in other regions of the body, emphasizing the unique molecular networks that control the development of various muscles in vertebrates.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Desarrollo de Músculos/fisiología , Transducción de Señal , Somitos/metabolismo , Factores de Transcripción/metabolismo , Proteínas Wnt/metabolismo , Animales , Región Branquial/citología , Región Branquial/embriología , Región Branquial/metabolismo , Recuento de Células , Diferenciación Celular , Proliferación Celular , Pollos , Extremidades/embriología , Marcación de Gen , Ratones , Unión Proteica , Somitos/citología , Somitos/embriología , Proteína del Homeodomínio PITX2
12.
JCI Insight ; 5(23)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-33108146

RESUMEN

Pituitary developmental defects lead to partial or complete hormone deficiency and significant health problems. The majority of cases are sporadic and of unknown cause. We screened 28 patients with pituitary stalk interruption syndrome (PSIS) for mutations in the FAT/DCHS family of protocadherins that have high functional redundancy. We identified seven variants, four of which putatively damaging, in FAT2 and DCHS2 in six patients with pituitary developmental defects recruited through a cohort of patients with mostly ectopic posterior pituitary gland and/or pituitary stalk interruption. All patients had growth hormone deficiency and two presented with multiple hormone deficiencies and small glands. FAT2 and DCHS2 were strongly expressed in the mesenchyme surrounding the normal developing human pituitary. We analyzed Dchs2-/- mouse mutants and identified anterior pituitary hypoplasia and partially penetrant infundibular defects. Overlapping infundibular abnormalities and distinct anterior pituitary morphogenesis defects were observed in Fat4-/- and Dchs1-/- mouse mutants but all animal models displayed normal commitment to the anterior pituitary cell type. Together our data implicate FAT/DCHS protocadherins in normal hypothalamic-pituitary development and identify FAT2 and DCHS2 as candidates underlying pituitary gland developmental defects such as ectopic pituitary gland and/or pituitary stalk interruption.


Asunto(s)
Proteínas Relacionadas con las Cadherinas/genética , Cadherinas/genética , Enfermedades de la Hipófisis/genética , Adolescente , Animales , Proteínas Relacionadas con las Cadherinas/metabolismo , Cadherinas/metabolismo , Femenino , Humanos , Hipotálamo/crecimiento & desarrollo , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Hipófisis/crecimiento & desarrollo , Hipófisis/metabolismo , Adulto Joven
13.
Biorheology ; 43(3,4): 355-70, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16912408

RESUMEN

The development of the skull is characterised by its dependence upon epigenetic influences. One of the most important of these is secondary chondrogenesis, which occurs following ossification within certain membrane bone periostea, as a result of biomechanical articulation. We have studied the genesis, character and function of the secondary chondrocytes of the quadratojugal of the chick between embryonic days 11 and 14. Analysis of gene expression revealed that secondary chondrocytes formed coincident with Sox9 upregulation from a precursor population expressing Cbfa1/Runx2: a reversal of the normal sequence. Such secondary chondrocytes rapidly acquired a phenotype that is a compound of prehypertrophic and hypertrophic chondrocytes, exited from the cell cycle and upregulated Ihh. Pulse and pulse/chase experiments with BrdU confirmed the germinal region as the highly proliferative source of the secondary chondrocytes, which formed by division of chondrocyte-committed precursors. By blocking Hh signalling in explant cultures we show that the enhanced proliferation of the germinal region surrounding the secondary chondrocytes derives from this Ihh source. Additionally, in vitro studies on membrane bone periosteal cells (nongerminal region) demonstrated that these cells can also respond to Ihh, and do so both by enhanced proliferation and precocious osteogenesis. Despite the pro-osteogenic effects of Ihh on periosteal cell differentiation, mechanical articulation of the quadratojugal/quadrate joint in explant culture revealed a negative role for articulation in the regulation of osteocalcin by germinal region descendants. Thus, the mechanical stimulus that is the spur to secondary chondrocyte formation appears able to override the osteogenic influence of Ihh on the periosteum, but does not interfere with the cell cycle-promoting component of Hh signalling.


Asunto(s)
Condrogénesis/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Embrión de Pollo , Condrocitos/metabolismo , Condrocitos/fisiología , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Proteínas del Grupo de Alta Movilidad/metabolismo , Mecanotransducción Celular/fisiología , Factor de Transcripción SOX9 , Cráneo/citología , Cráneo/embriología , Estrés Mecánico , Técnicas de Cultivo de Tejidos , Transactivadores/metabolismo , Factores de Transcripción/metabolismo
14.
Front Physiol ; 7: 114, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27065882

RESUMEN

The pituitary gland is a primary endocrine organ that controls major physiological processes. Abnormal development or homeostatic disruptions can lead to human disorders such as hypopituitarism or tumors. Multiple signaling pathways, including WNT, BMP, FGF, and SHH regulate pituitary development but the role of the Hippo-YAP1/TAZ cascade is currently unknown. In multiple tissues, the Hippo kinase cascade underlies neoplasias; it influences organ size through the regulation of proliferation and apoptosis, and has roles in determining stem cell potential. We have used a sensitive mRNA in situ hybridization method (RNAscope) to determine the expression patterns of the Hippo pathway components during mouse pituitary development. We have also carried out immunolocalisation studies to determine when YAP1 and TAZ, the transcriptional effectors of the Hippo pathway, are active. We find that YAP1/TAZ are active in the stem/progenitor cell population throughout development and at postnatal stages, consistent with their role in promoting the stem cell state. Our results demonstrate for the first time the collective expression of major components of the Hippo pathway during normal embryonic and postnatal development of the pituitary gland.

15.
Nat Commun ; 7: 11469, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27145737

RESUMEN

Skeletal shape varies widely across species as adaptation to specialized modes of feeding and locomotion, but how skeletal shape is established is unknown. An example of extreme diversity in the shape of a skeletal structure can be seen in the sternum, which varies considerably across species. Here we show that the Dchs1-Fat4 planar cell polarity pathway controls cell orientation in the early skeletal condensation to define the shape and relative dimensions of the mouse sternum. These changes fit a model of cell intercalation along differential Dchs1-Fat4 activity that drives a simultaneous narrowing, thickening and elongation of the sternum. Our results identify the regulation of cellular polarity within the early pre-chondrogenic mesenchyme, when skeletal shape is established, and provide the first demonstration that Fat4 and Dchs1 establish polarized cell behaviour intrinsically within the mesenchyme. Our data also reveal the first indication that cell intercalation processes occur during ventral body wall elongation and closure.


Asunto(s)
Huesos/embriología , Huesos/metabolismo , Cadherinas/metabolismo , Polaridad Celular , Animales , Cadherinas/genética , Mesodermo/crecimiento & desarrollo , Mesodermo/metabolismo , Ratones , Ratones Noqueados , Morfogénesis , Transducción de Señal , Esternón/embriología , Esternón/metabolismo
16.
PLoS One ; 11(8): e0159657, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27519049

RESUMEN

Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages.


Asunto(s)
Densidad Ósea , Hueso Esponjoso/patología , Condrocitos/patología , Osteogénesis/fisiología , Inhibidor Tisular de Metaloproteinasa-3/metabolismo , Animales , Hueso Esponjoso/metabolismo , Condrocitos/metabolismo , Femenino , Metaloproteinasas de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Noqueados , Ratones Transgénicos , Inhibidor Tisular de Metaloproteinasa-3/genética
17.
Anat Embryol (Berl) ; 209(6): 461-9, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15887045

RESUMEN

The homeobox-containing transcription factor Bapx1 (also known as Nkx3.2) is crucial for development of the axial skeleton and parts of the chondrocranium. Here we describe the detailed expression of Bapx1 during chick limb development and show that in contrast to its expression in the axial skeleton, Bapx1 is expressed after the commitment to chondrogenesis. Bapx1 is initially expressed throughout the developing skeletal elements prior to the overt differentiation of the distinct chondrogenic layers. Once distinct layers (proliferating, prehypertrophic and hypertrophic) have formed, Bapx1 expression is restricted to the proliferating chondrocytes. Bapx1 transcripts are excluded from the articular cartilage. A second homeobox-containing transcription factor, Barx1, is expressed in a complementary fashion in the developing joint and articular cartilage. Interestingly, in vitro functional analyses showed that Bapx1 overexpression in micromass cultures increased both matrix production and nodule number suggesting that Bapx1 is sufficient to promote chondrogenesis in the limb. In contrast, Barx1 had the opposite effect on nodule number suggesting that it has an inhibitory effect on chondrogenic initiation consistent with its expression in the developing joint. A slight increase in matrix levels was also observed consistent with its expression in the articular chondrocytes. Finally, we show that Bapx1 is also expressed in the soft tissues such as the developing tendons, muscle sheaths and surrounding mesenchyme, and therefore may have additional as yet uncharacterized roles in limb morphogenesis.


Asunto(s)
Proteínas Aviares/fisiología , Condrogénesis/fisiología , Extremidades/embriología , Proteínas de Homeodominio/fisiología , Proteínas Musculares/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Aviares/genética , Proliferación Celular , Embrión de Pollo , Condrocitos/citología , Condrocitos/metabolismo , Proteínas de Homeodominio/genética , Hibridación in Situ , Datos de Secuencia Molecular , Proteínas Musculares/genética , Alineación de Secuencia
18.
Int J Dev Biol ; 46(7): 927-36, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12455630

RESUMEN

Wnts control a number of processes during limb development--from initiating outgrowth and controlling patterning, to regulating cell differentiation in a number of tissues. Interactions of Wnt signalling pathway components with those of other signalling pathways have revealed new mechanisms of modulating Wnt signalling, which may explain how different responses to Wnt signalling are elicited in different cells. Given the number of Wnts that are expressed in the limb and their ability to induce differential responses, the challenge will be to dissect precisely how Wnt signalling is regulated and how it controls limb development at a cellular level, together with the other signalling pathways, to produce the functional limb capable of coordinated precise movements.


Asunto(s)
Inducción Embrionaria/fisiología , Extremidades/embriología , Proteínas Proto-Oncogénicas/fisiología , Proteínas de Pez Cebra , Animales , Huesos/embriología , Diferenciación Celular/fisiología , Embrión de Pollo , Desarrollo de Músculos/fisiología , Osteólisis Esencial/fisiopatología , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Wnt
19.
Int J Biochem Cell Biol ; 35(4): 401-4, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12565700

RESUMEN

The chondrocyte is the resident cell of cartilage that is a prominent tissue in the embryo acting as a template for the development of skeletal elements. In the adult, the distribution of permanent cartilage is much more restricted and is necessary for mechanical support, growth and movement. The cell is isolated within a voluminous extracellular matrix (ECM) that is neither vascularised nor innervated. As a result, nutrient/waste exchange occurs through diffusion and, consequently, under normal and pathological conditions, the cell is unique in its ability to exist in a low oxygen tension environment. Partly as a result of these properties, the tissue has a low reparative potential that, in the case of articular cartilage, predisposes the tissue to degenerative conditions such as arthritis that is a significant clinical problem. Cellfacts. Cytoplasmically isolated. High matrix/cell volume ratio. Do not divide after skeletal maturity unless during pathology. Major contributor to growth of the body. Most energy requirements obtained through glycolysis.


Asunto(s)
Condrocitos/metabolismo , Animales , Artritis/metabolismo , Artritis/patología , Cartílago Articular/metabolismo , Cartílago Articular/patología , Diferenciación Celular , Condrocitos/ultraestructura , Colágeno/metabolismo , Humanos , Ratones
20.
Sci Prog ; 85(Pt 2): 151-73, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12216279

RESUMEN

The sensory organs--the eye, ear, and nose- are formed, in part, from ectodermal thickenings: placodes. Their development is distinct from that of other regions of the developing body and they are essential for the development of other structures. For example, the olfactory placode which gives rise to the nose is essential for the functional development of the reproductive organs and hence fertility. Recently much progress has been made in the understanding of placode development, at both a molecular and embryological level. This is important as abnormal development of placodes occurs in a number of human syndromes. Furthermore, knowledge of placode development will give insight into therapeutic strategies to prevent degenerative change such as deafness. This review highlights the current knowledge of placode development and the future challenges in unravelling the cascades of signalling interactions that control development of these unique structures.


Asunto(s)
Ectodermo/fisiología , Órganos de los Sentidos/embriología , Animales , Diferenciación Celular/genética , Humanos , Morfogénesis/genética , Órganos de los Sentidos/anatomía & histología , Órganos de los Sentidos/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA