RESUMEN
Heart failure with preserved ejection fraction (HFpEF) has been characterized by lower blood flow to exercising limbs and lower peak oxygen utilization ( V Ì O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ ), possibly associated with disease-related changes in sympathetic (α-adrenergic) signaling. Thus, in seven patients with HFpEF (70 ± 6 years, 3 female/4 male) and seven controls (CON) (66 ± 3 years, 3 female/4 male), we examined changes (%Δ) in leg blood flow (LBF, Doppler ultrasound) and leg V Ì O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ to intra-arterial infusion of phentolamine (PHEN, α-adrenergic antagonist) or phenylephrine (PE, α1-adrenergic agonist) at rest and during single-leg knee-extension exercise (0, 5 and 10 W). At rest, the PHEN-induced increase in LBF was not different between groups, but PE-induced reductions in LBF were lower in HFpEF (-16% ± 4% vs. -26% ± 5%, HFpEF vs. CON; P < 0.05). During exercise, the PHEN-induced increase in LBF was greater in HFpEF at 10 W (16% ± 8% vs. 8% ± 5%; P < 0.05). PHEN increased leg V Ì O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ in HFpEF (10% ± 3%, 11% ± 6%, 15% ± 7% at 0, 5 and 10 W; P < 0.05) but not in controls (-1% ± 9%, -4% ± 2%, -1% ± 5%; P = 0.24). The 'magnitude of sympatholysis' (PE-induced %Δ LBF at rest - PE-induced %Δ LBF during exercise) was lower in patients with HFpEF (-6% ± 4%, -6% ± 6%, -7% ± 5% vs. -13% ± 6%, -17% ± 5%, -20% ± 5% at 0, 5 and 10 W; P < 0.05) and was positively related to LBF, leg oxygen delivery, leg V Ì O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ , and the PHEN-induced increase in LBF (P < 0.05). Together, these data indicate that excessive α-adrenergic vasoconstriction restrains blood flow and limits V Ì O 2 ${{\dot{V}}_{{{{\mathrm{O}}}_{\mathrm{2}}}}}$ of the exercising leg in patients with HFpEF, and is related to impaired functional sympatholysis in this patient group. KEY POINTS: Sympathetic (α-adrenergic)-mediated vasoconstriction is exaggerated during exercise in patients with heart failure with preserved ejection fraction (HFpEF), which may contribute to limitations of blood flow, oxygen delivery and oxygen utilization in the exercising muscle. The ability to adequately attenuate α1-adrenergic vasoconstriction (i.e. functional sympatholysis) within the vasculature of the exercising muscle is impaired in patients with HFpEF. These observations extend our current understanding of HFpEF pathophysiology by implicating excessive α-adrenergic restraint and impaired functional sympatholysis as important contributors to disease-related impairments in exercising muscle blood flow and oxygen utilization in these patients.
Asunto(s)
Ejercicio Físico , Insuficiencia Cardíaca , Músculo Esquelético , Volumen Sistólico , Humanos , Masculino , Femenino , Insuficiencia Cardíaca/fisiopatología , Insuficiencia Cardíaca/metabolismo , Anciano , Músculo Esquelético/irrigación sanguínea , Ejercicio Físico/fisiología , Persona de Mediana Edad , Fentolamina/farmacología , Flujo Sanguíneo Regional , Fenilefrina/farmacología , Consumo de Oxígeno , Antagonistas Adrenérgicos alfa/farmacología , Pierna/irrigación sanguíneaRESUMEN
Exercising muscle blood flow is reduced in patients with heart failure with a preserved ejection fraction (HFpEF), which may be related to disease-related changes in the ability to overcome sympathetic nervous system (SNS)-mediated vasoconstriction during exercise, (i.e., "functional sympatholysis"). Thus, in 12 patients with HFpEF (69 ± 7 yr) and 11 healthy controls (Con, 69 ± 4 yr), we examined forearm blood flow (FBF), mean arterial pressure (MAP), and forearm vascular conductance (FVC) during rhythmic handgrip exercise (HG) at 30% of maximum voluntary contraction with or without lower-body negative pressure (LBNP, -20 mmHg) to increase SNS activity and elicit peripheral vasoconstriction. SNS-mediated vasoconstrictor responses were determined as LBNP-induced changes (%Δ) in FVC, and the "magnitude of sympatholysis" was calculated as the difference between responses at rest and during exercise. At rest, the LBNP-induced change in FVC was significantly lesser in HFpEF compared with Con (HFpEF: -9.5 ± 5.5 vs. Con: -21.0 ± 8.0%; P < 0.01). During exercise, LBNP-induced %ΔFVC was significantly attenuated in Con compared with rest (HG: -5.8 ± 6.0%; P < 0.05) but not in HFpEF (HG: -9.9 ± 2.5%; P = 0.88). Thus, the magnitude of sympatholysis was lesser in HFpEF compared with Con (HFpEF: 0.4 ± 4.7 vs. Con: -15.2 ± 11.8%; P < 0.01). These data demonstrate a diminished ability to attenuate SNS-mediated vasoconstriction in HFpEF and provide new evidence suggesting impaired functional sympatholysis in this patient group.NEW & NOTEWORTHY Data from the current study suggest that functional sympatholysis, or the ability to adequately attenuate sympathetic nervous system (SNS)-mediated vasoconstriction during exercise, is impaired in patients with heart failure with preserved ejection fraction (HFpEF). These observations extend the current understanding of HFpEF pathophysiology by implicating inadequate functional sympatholysis as an important contributor to reduced exercising muscle blood flow in this patient group.
Asunto(s)
Insuficiencia Cardíaca , Simpaticolíticos , Humanos , Fuerza de la Mano/fisiología , Volumen Sistólico , Contracción Muscular , Músculo Esquelético/irrigación sanguínea , Vasoconstricción/fisiología , Sistema Nervioso Simpático , Antebrazo/irrigación sanguínea , Flujo Sanguíneo Regional/fisiologíaRESUMEN
Pseudomonas aeruginosa is an opportunistic pathogen that uses malonate among its many carbon sources. We recently reported that, when grown in blood from trauma patients, P. aeruginosa expression of malonate utilization genes was upregulated. In this study, we explored the role of malonate utilization and its contribution to P. aeruginosa virulence. We grew P. aeruginosa strain PA14 in M9 minimal medium containing malonate (MM9) or glycerol (GM9) as a sole carbon source and assessed the effect of the growth on quorum sensing, virulence factors, and antibiotic resistance. Growth of PA14 in MM9, compared to GM9, reduced the production of elastases, rhamnolipids, and pyoverdine; enhanced the production of pyocyanin and catalase; and increased its sensitivity to norfloxacin. Growth in MM9 decreased extracellular levels of N-acylhomoserine lactone autoinducers, an effect likely associated with increased pH of the culture medium; but had little effect on extracellular levels of PQS. At 18 hr of growth in MM9, PA14 formed biofilm-like structures or aggregates that were associated with biomineralization, which was related to increased pH of the culture medium. These results suggest that malonate significantly impacts P. aeruginosa pathogenesis by influencing the quorum sensing systems, the production of virulence factors, biofilm formation, and antibiotic resistance.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Farmacorresistencia Bacteriana/fisiología , Malonatos/metabolismo , Pseudomonas aeruginosa/patogenicidad , Percepción de Quorum/fisiología , Antibacterianos/farmacología , Biomineralización/fisiología , Catalasa/biosíntesis , Decanoatos , Disacáridos/biosíntesis , Glicerol/metabolismo , Norfloxacino/farmacología , Oligopéptidos/biosíntesis , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Piocianina/biosíntesis , Serina Endopeptidasas/biosíntesis , Virulencia , Factores de Virulencia/metabolismoRESUMEN
BACKGROUND: The fungus, Batrachochytrium dendrobatidis, is the causative agent of chytridiomycosis and a leading cause of global decline in amphibian populations. The first stages of chytridiomycosis include: inflammation, hyperkeratosis, lethargy, loss of righting reflex, and disruption of internal electrolyte levels leading to eventual death of the host. Previous work indicates that B. dendrobatidis can produce immunomodulatory compounds and other secreted molecules that regulate the growth of the fungus. In this study, filtrates of the fungus grown in media and water were subjected to ultra-performance liquid chromatography-mass spectrometry and analyzed using Compound Discoverer 3.0. RESULTS: Identification of cyclo(phenylalanyl-prolyl), chitobiose, and S-adenosylmethionine were verified by their retention times and fragmentation patterns from B. dendrobatidis supernatants. Previous studies have analyzed the effects of B. dendrobatidis on amphibian models, in vitro, or in cell culture. We studied the effects of live B. dendrobatidis cells, spent culture filtrates containing secreted metabolites, and cyclo(pheylalanyl-prolyl) on wax moth larvae (Galleria mellonella). Concentrated filtrates caused melanization within 24 h, while live B. dendrobatidis caused melanization within 48 h. CONCLUSIONS: Here we show B. dendrobatidis produces secreted metabolites previously unreported. The impacts of these chemicals were tested on an alternate non-amphibian model system that has been used for other fungi to study pathogenicity traits in this fungus.
Asunto(s)
BatrachochytriumRESUMEN
This study sought to compare the brachial and carotid hemodynamic response to hot water immersion (HWI) between healthy young men and women. Ten women (W) and 11 men (M) (24 ± 4 yr) completed a 60-min HWI session immersed to the level of the sternum in 40°C water. Brachial and carotid artery hemodynamics (Doppler ultrasound) were measured at baseline (seated rest) and every 15 min throughout HWI. Within the brachial artery, total shear rate was elevated to a greater extent in women [+479 (+364, +594) s-1] than in men [+292 (+222, +361) s-1] during HWI (P = 0.005). As shear rate is inversely proportional to blood vessel diameter and directly proportional to blood flow velocity, the sex difference in brachial shear response to HWI was the result of a smaller brachial diameter among women at baseline (P < 0.0001) and throughout HWI (main effect of sex, P < 0.0001) and a greater increase in brachial velocity seen in women [+48 (+36, +61) cm/s] compared with men [+35 (+27, +43) cm/s] with HWI (P = 0.047) which allowed for a similar increase in brachial blood flow between sexes [M: +369 (+287, +451) mL/min, W: +364 (+243, +486) mL/min, P = 0.943]. In contrast, no differences were seen between sexes in carotid total shear rate, flow, velocity, or diameter at baseline or throughout HWI. These data indicate the presence of an artery-specific sex difference in the hemodynamic response to a single bout of HWI.
Asunto(s)
Arteria Braquial/fisiología , Arteria Carótida Común/fisiología , Hemodinámica , Calor , Hipertermia Inducida , Inmersión , Adulto , Velocidad del Flujo Sanguíneo , Arteria Braquial/diagnóstico por imagen , Arteria Carótida Común/diagnóstico por imagen , Femenino , Humanos , Masculino , Flujo Sanguíneo Regional , Factores Sexuales , Factores de Tiempo , Ultrasonografía Doppler , Adulto JovenRESUMEN
INTRODUCTION: Sepsis is a leading cause of mortality in burn patients. One of the major causes of sepsis in burn patients is Pseudomonas aeruginosa. We hypothesized that during dissemination from infected burn wounds and subsequent sepsis, P. aeruginosa affects the metabolome of the blood resulting in changes to specific metabolites that would serve as biomarkers for early diagnosis of sepsis caused by P. aeruginosa. OBJECTIVES: To identify specific biomarkers in the blood after sepsis caused by P. aeruginosa infection of burns. METHODS: Gas chromatography with time-of-flight mass spectrometry was used to compare the serum metabolome of mice that were thermally injured and infected with P. aeruginosa (B-I) to that of mice that were neither injured nor infected, mice that were injured but not infected, and mice that were infected but not injured. RESULTS: Serum levels of 19 metabolites were significantly increased in the B-I group compared to controls while levels of eight metabolites were significantly decreased. Thymidine, thymine, uridine, and uracil (related to pyrimidine metabolism), malate and succinate (a possible sign of imbalance in the tricarboxylic acid cycle), 5-oxoproline (related to glutamine and glutathione metabolism), and trans-4-hydroxyproline (a major component of the protein collagen) were increased. Products of amino acid metabolism were significantly decreased in the B-I group, including methionine, tyrosine, indole-3-acetate, and indole-3-propionate. CONCLUSION: In all, 26 metabolites were identified, including a unique combination of five metabolites (trans-4-hydroxyproline, 5-oxoproline, glycerol-3-galactoside, indole-3-acetate, and indole-3-propionate) that could serve as a set of biomarkers for early diagnosis of sepsis caused by P. aeruginosa in burn patients.
Asunto(s)
Quemaduras/metabolismo , Pseudomonas aeruginosa/metabolismo , Sepsis/metabolismo , Infección de Heridas/metabolismo , Animales , Biomarcadores/sangre , Biomarcadores/metabolismo , Quemaduras/sangre , Quemaduras/microbiología , Cromatografía de Gases , Modelos Animales de Enfermedad , Femenino , Espectrometría de Masas , Metabolómica , Ratones , Sepsis/sangre , Sepsis/microbiología , Infección de Heridas/sangre , Infección de Heridas/microbiologíaRESUMEN
Polycystic ovary syndrome (PCOS) affects up to 15% of women and is associated with increased risk of obesity and cardiovascular disease. Repeated passive heat exposure [termed "heat therapy" (HT)] is a lifestyle intervention with the potential to reduce cardiovascular risk in obesity and PCOS. Women with obesity (n = 18) with PCOS [age 27 ± 4 yr, body mass index (BMI) 41.3 ± 4.7 kg/m2] were matched for age and BMI, then assigned to HT (n = 9) or time control (CON; n = 9). HT subjects underwent 30 one-hour hot tub sessions over 8-10 wk, whereas CON subjects did not undergo HT. Muscle sympathetic nerve activity (MSNA), blood pressure, cholesterol, C-reactive protein, and markers of vascular function were assessed at the start (Pre) and end (Post) of 8-10 wk. These measures included carotid and femoral artery wall thickness and flow-mediated dilation (FMD), measured both before and after 20 min of ischemia-20 min of reperfusion (I/R) stress. HT subjects exhibited reduced MSNA burst frequency (Pre: 20 ± 8 bursts/min, Post: 13 ± 5 bursts/min, P = 0.012), systolic (Pre: 124 ± 5 mmHg, Post: 114 ± 6 mmHg; P < 0.001) and diastolic blood pressure (Pre: 77 ± 6 mmHg, Post: 68 ± 3 mmHg; P < 0.001), C-reactive protein (Pre: 19.4 ± 13.7 nmol/L, Post: 15.2 ± 12.3 nmol/L; P = 0.018), total cholesterol (Pre: 5.4 ± 1.1 mmol/L, Post: 5.0 ± 0.8 mmol/L; P = 0.028), carotid wall thickness (Pre: 0.054 ± 0.005 cm, Post: 0.044 ± 0.005 cm; P = 0.010), and femoral wall thickness (Pre: 0.056 ± 0.009 cm, Post: 0.042 ± 0.005 cm; P = 0.003). FMD significantly improved in HT subjects over time following I/R (Pre: 5.6 ± 2.5%, Post: 9.5 ± 1.7%; P < 0.001). No parameters changed over time in CON, and BMI did not change in either group. These findings indicate that HT reduces sympathetic nerve activity, provides protection from I/R stress, and substantially improves cardiovascular risk profiles in women who are obese with PCOS.
Asunto(s)
Enfermedades Cardiovasculares/terapia , Calor , Obesidad/complicaciones , Síndrome del Ovario Poliquístico/terapia , Presión Sanguínea/fisiología , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/metabolismo , Femenino , Humanos , Obesidad/fisiopatología , Obesidad/terapia , Síndrome del Ovario Poliquístico/complicaciones , Factores de Riesgo , Sistema Nervioso Simpático/fisiopatologíaRESUMEN
KEY POINTS: A recent 30 year prospective study showed that lifelong sauna use reduces cardiovascular-related and all-cause mortality; however, the specific cardiovascular adaptations that cause this chronic protection are currently unknown. We investigated the effects of 8 weeks of repeated hot water immersion ('heat therapy') on various biomarkers of cardiovascular health in young, sedentary humans. We showed that, relative to a sham group which participated in thermoneutral water immersion, heat therapy increased flow-mediated dilatation, reduced arterial stiffness, reduced mean arterial and diastolic blood pressure, and reduced carotid intima media thickness, with changes all on par or greater than what is typically observed in sedentary subjects with exercise training. Our results show for the first time that heat therapy has widespread and robust effects on vascular function, and as such, could be a viable treatment option for improving cardiovascular health in a variety of patient populations, particularly those with limited exercise tolerance and/or capabilities. ABSTRACT: The majority of cardiovascular diseases are characterized by disorders of the arteries, predominantly caused by endothelial dysfunction and arterial stiffening. Intermittent hot water immersion ('heat therapy') results in elevations in core temperature and changes in cardiovascular haemodynamics, such as cardiac output and vascular shear stress, that are similar to exercise, and thus may provide an alternative means of improving health which could be utilized by patients with low exercise tolerance and/or capabilities. We sought to comprehensively assess the effects of 8 weeks of heat therapy on biomarkers of vascular function in young, sedentary subjects. Twenty young, sedentary subjects were assigned to participate in 8 weeks (4-5 times per week) of heat therapy (n = 10; immersion in a 40.5°C bath sufficient to maintain rectal temperature ≥ 38.5°C for 60 min per session) or thermoneutral water immersion (n = 10; sham). Eight weeks of heat therapy increased flow-mediated dilatation from 5.6 ± 0.3 to 10.9 ± 1.0% (P < 0.01) and superficial femoral dynamic arterial compliance from 0.06 ± 0.01 to 0.09 ±0.01 mm(2) mmHg(-1) (P = 0.03), and reduced (i.e. improved) aortic pulse wave velocity from 7.1 ± 0.3 to 6.1 ± 0.3 m s(-1) (P = 0.03), carotid intima media thickness from 0.43 ± 0.01 to 0.37 ± 0.01 mm (P < 0.001), and mean arterial blood pressure from 83 ± 1 to 78 ± 2 mmHg (P = 0.02). No changes were observed in the sham group or for carotid arterial compliance, superficial femoral intima media thickness or endothelium-independent dilatation. Heat therapy improved endothelium-dependent dilatation, arterial stiffness, intima media thickness and blood pressure, indicating improved cardiovascular health. These data suggest heat therapy may provide a simple and effective tool for improving cardiovascular health in various populations.
Asunto(s)
Endotelio Vascular/fisiología , Calor/uso terapéutico , Adulto , Presión Sanguínea , Arteria Braquial/diagnóstico por imagen , Arteria Braquial/fisiología , Enfermedades Cardiovasculares/prevención & control , Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/fisiología , Grosor Intima-Media Carotídeo , Endotelio Vascular/diagnóstico por imagen , Femenino , Arteria Femoral/diagnóstico por imagen , Arteria Femoral/fisiología , Humanos , Masculino , Conducta Sedentaria , Ultrasonografía Doppler , Rigidez Vascular , Vasodilatación , Adulto JovenRESUMEN
Versatility in carbon source utilization assists Pseudomonas aeruginosa in its adaptation to various niches. Recently, we characterized the role of malonate, an understudied carbon source, in quorum sensing regulation, antibiotic resistance, and virulence factor production in P. aeruginosa . These results indicate that global responses to malonate metabolism remain to be uncovered. We leveraged a publicly available metabolomic dataset on human airway and found malonate to be as abundant as glycerol, a common airway metabolite and carbon source for P. aeruginosa . Here, we explored and compared adaptations of P. aeruginosa UCBPP-PA14 (PA14) in response to malonate or glycerol as a sole carbon source using transcriptomics and phenotypic assays. Malonate utilization activated glyoxylate and methylcitrate cycles and induced several stress responses, including oxidative, anaerobic, and metal stress responses associated with increases in intracellular aluminum and strontium. Some induced genes were required for optimal growth of P. aeruginosa in malonate. To assess the conservation of malonate-associated responses among P. aeruginosa strains, we compared our findings in strain PA14 with other lab strains and cystic fibrosis isolates of P. aeruginosa . Most strains grew on malonate as a sole carbon source as efficiently as or better than glycerol. While not all responses to malonate were conserved among strains, formation of biomineralized biofilm-like aggregates, increased tolerance to kanamycin, and increased susceptibility to norfloxacin were the most frequently observed phenotypes. Our findings reveal global remodeling of P. aeruginosa gene expression during its growth on malonate as a sole carbon source that is accompanied by several important phenotypic changes. These findings add to accumulating literature highlighting the role of different carbon sources in the physiology of P. aeruginosa and its niche adaptation. Importance: Pseudomonas aeruginosa is a notorious pathogen that causes local and systemic infections in immunocompromised individuals. Different carbon sources can uniquely modulate metabolic and virulence pathways in P. aeruginosa , highlighting the importance of the environment that the pathogen occupies. In this work, we used a combination of transcriptomic analysis and phenotypic assays to determine how malonate utilization impacts P. aeruginosa, as recent evidence indicates this carbon source may be relevant to certain niches associated within the human host. We found that malonate utilization can induce global stress responses, alter metabolic circuits, and influence various phenotypes of P. aeruginosa that could influence host colonization. Investigating the metabolism of malonate provides insight into P. aeruginosa adaptations to specific niches where this substrate is abundant, and how it can be leveraged in the development of much-needed antimicrobial agents or identification of new therapeutic targets of this difficult-to-eradicate pathogen.
RESUMEN
ASCO is a global professional society representing more than 50,000 physicians, other health care professionals, and advocates in over 100 countries specializing in cancer treatment, diagnosis, prevention, and advocacy. ASCO strives, through research, education, and promotion of the highest quality of patient care, to create a world where cancer is prevented or cured, and every survivor is healthy. In this pursuit, health equity remains the guiding institutional principle that applies to all its activities across the cancer care continuum. This ASCO policy statement emphasizes the urgent need for global equity in clinical trials, aiming to enhance access and representation in cancer research as it not only improves cancer outcomes but also upholds principles of fairness and justice in health care.
Asunto(s)
Neoplasias , Humanos , Atención a la Salud , Neoplasias/terapia , Neoplasias/prevención & control , Políticas , Ensayos Clínicos como AsuntoRESUMEN
Versatility in carbon source utilization is a major contributor to niche adaptation in Pseudomonas aeruginosa. Malonate is among the abundant carbon sources in the lung airways, yet it is understudied. Recently, we characterized how malonate impacts quorum sensing regulation, antibiotic resistance, and virulence factor production in P. aeruginosa. Herein, we show that malonate as a carbon source supports more robust growth in comparison to glycerol in several cystic fibrosis isolates of P. aeruginosa. Furthermore, we show phenotypic responses to malonate were conserved among clinical strains, i.e., formation of biomineralized biofilm-like aggregates, increased tolerance to kanamycin, and increased susceptibility to norfloxacin. Moreover, we explored transcriptional adaptations of P. aeruginosa UCBPP-PA14 (PA14) in response to malonate versus glycerol as a sole carbon source using transcriptomics. Malonate utilization activated glyoxylate and methylcitrate cycles and induced several stress responses, including oxidative, anaerobic, and metal stress responses associated with increases in intracellular aluminum and strontium. We identified several genes that were required for optimal growth of P. aeruginosa in malonate. Our findings reveal important remodeling of P. aeruginosa gene expression during its growth on malonate as a sole carbon source that is accompanied by several important phenotypic changes. These findings add to the accumulating literature highlighting the role of different carbon sources in the physiology of P. aeruginosa and its niche adaptation.
RESUMEN
Heart failure with preserved ejection fraction (HFpEF) is associated with autonomic dysregulation, which may be related to baroreflex dysfunction. Thus, we tested the hypothesis that cardiac and peripheral vascular responses to baroreflex activation via lower-body negative pressure (LBNP; -10, -20, -30, -40 mmHg) would be diminished in patients with HFpEF (n = 10, 71 ± 7 yr) compared with healthy controls (CON, n = 9, 69 ± 5 yr). Changes in heart rate (HR), mean arterial pressure (MAP, Finapres), forearm blood flow (FBF, ultrasound Doppler), and thoracic impedance (Z) were determined. Mild levels of LBNP (-10 and -20 mmHg) were used to specifically assess the cardiopulmonary baroreflex, whereas responses across the greater levels of LBNP represented an integrated baroreflex response. LBNP significantly increased in HR in CON subjects at -30 and -40 mmHg (+3 ± 3 and +6 ± 5 beats/min, P < 0.01), but was unchanged in patients with HFpEF across all LBNP levels. LBNP provoked progressive peripheral vasoconstriction, as quantified by changes in forearm vascular conductance (FVC), in both groups. However, a marked (40%-60%) attenuation in FVC responses was observed in patients with HFpEF (-6 ± 8, -15 ± 6, -16 ± 5, and -19 ± 7 mL/min/mmHg at -10, -20, -30, and -40 mmHg, respectively) compared with controls (-15 ± 10, -22 ± 6, -25 ± 10, and -28 ± 10 mL/min/mmHg, P < 0.01). MAP was unchanged in both groups. Together, these data provide new evidence for impairments in cardiopulmonary baroreflex function and diminished cardiovascular responsiveness during hypovolemia in patients with HFpEF, which may be an important aspect of the disease-related changes in autonomic cardiovascular control in this patient group.NEW & NOTEWORTHY Data from the current study demonstrate diminished cardiovascular responsiveness during hypovolemia induced by incremental lower-body negative pressure in patients with heart failure with preserved ejection fraction (HFpEF). These diminished responses imply impaired cardiopulmonary baroreflex function and altered autonomic cardiovascular regulation which may represent an important aspect of HFpEF pathophysiology.
Asunto(s)
Insuficiencia Cardíaca , Humanos , Hipovolemia , Barorreflejo , Volumen Sistólico , ArteriasRESUMEN
BACKGROUND: Pseudomonas aeruginosa Vfr (the virulence factor regulator) enhances P. aeruginosa virulence by positively regulating the expression of numerous virulence genes. A previous microarray analysis identified numerous genes positively regulated by Vfr in strain PAK, including the yet uncharacterized PA2782 and PA2783. RESULTS: In this study, we report the detailed characterization of PA2783 in the P. aeruginosa strain PAO1. RT-PCR analysis confirmed that PA2782-PA2783 constitute an operon. A mutation in vfr significantly reduced the expression of both genes. The predicted protein encoded by PA2783 contains a typical leader peptide at its amino terminus end as well as metalloendopeptidase and carbohydrate binding motifs at its amino terminus and carboxy terminus regions, respectively. An in-frame PA2783::phoA fusion encoded a hybrid protein that was exported to the periplasmic space of Escherichia coli and P. aeruginosa. In PAO1, the proteolytic activity of the PA2783-encoded protein was masked by other P. aeruginosa extracellular proteases but an E. coli strain carrying a PA2783 recombinant plasmid produced considerable proteolytic activity. The outer membrane fraction of an E. coli strain in which PA2783 was overexpressed contained specific endopeptidase activity. In the presence of cAMP, purified recombinant Vfr (rVfr) bound to a 98-bp fragment within the PA2782-PA2783 upstream region that carries a putative Vfr consensus sequence. Through a series of electrophoretic mobility shift assays, we localized rVfr binding to a 33-bp fragment that contains part of the Vfr consensus sequence and a 5-bp imperfect (3/5) inverted repeat at its 3' and 5' ends (TGGCG-N22-CGCTG). Deletion of either repeat eliminated Vfr binding. CONCLUSIONS: PA2782 and PA2783 constitute an operon whose transcription is positively regulated by Vfr. The expression of PA2783 throughout the growth cycle of P. aeruginosa follows a unique pattern. PA2783 codes for a secreted metalloendopeptidase, which we named Mep72. Mep72, which has metalloendopeptidase and carbohydrate-binding domains, produced proteolytic and endopeptidase activities in E. coli. Vfr directly regulates the expression of the PA2782-mep72 operon by binding to its upstream region. However, unlike other Vfr-targeted genes, Vfr binding does not require an intact Vfr consensus binding sequence.
Asunto(s)
Proteínas Bacterianas/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Metaloendopeptidasas/metabolismo , Pseudomonas aeruginosa/enzimología , Regulón , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Sitios de Unión , Proteína Receptora de AMP Cíclico/genética , Análisis Mutacional de ADN , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/genética , Perfilación de la Expresión Génica , Técnicas de Inactivación de Genes , Metaloendopeptidasas/genética , Operón , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Señales de Clasificación de Proteína , Pseudomonas aeruginosa/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Sympathetic cholinergic nerve cotransmission is widely accepted as the mechanism of cutaneous active vasodilation (CAVD) during whole body passive heating (passive heating). However, recent research suggests that there may be mechanistic differences in CAVD to heating, depending on the modality of thermal loading. It is unknown whether sympathetic cholinergic cotransmission explains CAVD during exercise. This study sought to confirm the role of cholinergic nerves in CAVD during passive heating and expand these findings to exercise. It was hypothesized that CAVD during both exercise and passive heating would be abolished by cholinergic nerve blockade. Eight young (18-30 yr) recreationally active individuals exercised (1 h seated cycling at 60% VÌo2peak) and were passively heated (â¼1 h seated passive heating with mean skin temperature clamped at 39°C by water-perfused suit), in randomized order on separate days. Cholinergic nerves were blocked via Botox â¼2 wk prior to the study. Skin blood flow was assessed using laser Doppler flowmetry and expressed as percent of maximum cutaneous vascular conductance (%CVCmax). At the end of exercise/passive heating, internal temperature had increased by â¼0.7°C. The %CVCmax at the Botox-treated sites (exercise: 19 ± 6 and passive heating: 15 ± 14%CVCmax) was significantly less (P < 0.001) than at the untreated sites (exercise: 35 ± 11 and passive heating: 38 ± 6%CVCmax), but there were no differences between exercise and passive heating (modality, P = 0.909; modality-Botox interaction, P = 0.230). We conclude that CAVD during both exercise and passive heating is mediated by sympathetic cholinergic nerves, a critical thermoregulatory mechanism that appears to be independent of the thermal loading modality.NEW & NOTEWORTHY Our study establishes the primacy of cholinergic nerves to cutaneous active vasodilation during exercise and confirms this model during passive heating using a crossover study design. In addition, the mode of heating, whether passive or exercise induced, did not change the sensitivity of the cholinergic component of the thermoeffector response to increased internal temperature. Thus, cutaneous active vasodilator nerves are responsible for similar skin blood flow responses regardless of how thermal loading is accomplished.
Asunto(s)
Toxinas Botulínicas Tipo A , Vasodilatación , Humanos , Colinérgicos , Estudios Cruzados , Fiebre , Calefacción , Flujo Sanguíneo Regional/fisiología , Piel/irrigación sanguínea , Vasodilatación/fisiologíaRESUMEN
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen that causes high morbidity and mortality in cystic fibrosis (CF) and immunocompromised patients, including patients with ventilator-associated pneumonia (VAP), severely burned patients, and patients with surgical wounds. Due to the intrinsic and extrinsic antibiotic resistance mechanisms, the ability to produce several cell-associated and extracellular virulence factors, and the capacity to adapt to several environmental conditions, eradicating P. aeruginosa within infected patients is difficult. Pseudomonas aeruginosa is one of the six multi-drug-resistant pathogens (ESKAPE) considered by the World Health Organization (WHO) as an entire group for which the development of novel antibiotics is urgently needed. In the United States (US) and within the last several years, P. aeruginosa caused 27% of deaths and approximately USD 767 million annually in health-care costs. Several P. aeruginosa therapies, including new antimicrobial agents, derivatives of existing antibiotics, novel antimicrobial agents such as bacteriophages and their chelators, potential vaccines targeting specific virulence factors, and immunotherapies have been developed. Within the last 2-3 decades, the efficacy of these different treatments was tested in clinical and preclinical trials. Despite these trials, no P. aeruginosa treatment is currently approved or available. In this review, we examined several of these clinicals, specifically those designed to combat P. aeruginosa infections in CF patients, patients with P. aeruginosa VAP, and P. aeruginosa-infected burn patients.
RESUMEN
As the voice of cancer care clinicians and the patients they serve, ASCO has taken steps to elevate awareness about biosimilar products and their use in oncology. In 2018, ASCO released its Statement on Biosimilars in Oncology which was subsequently published in the Journal of Clinical Oncology to serve as an educational tool which highlighted and provided guidance on several topical areas surrounding biosimilars. At the time of its publication, the US Food and Drug Administration (FDA) had approved eight biosimilar products for use in the United States, including one product for use as a supportive care agent in the cancer setting and two products for use in the treatment for cancer. This number has risen dramatically (40 approvals), with a total of 22 cancer or cancer-related biosimilar products approved since 2015. Recently, the FDA also approved the four interchangeable biosimilar products for diabetes, certain inflammatory diseases, and certain ophthalmic diseases. Given the current market dynamics and the regulatory landscape, this ASCO manuscript now seeks to propose several policy recommendations across the scope of value, interchangeability, clinician barriers, and patient education and access. This policy statement is intended to guide ASCO's future activities and strategies and serves to affirm our commitment to providing education to the oncology community on the use of biosimilars in the cancer setting.
Asunto(s)
Biosimilares Farmacéuticos , Neoplasias , Humanos , Estados Unidos , Biosimilares Farmacéuticos/farmacología , Biosimilares Farmacéuticos/uso terapéutico , Aprobación de Drogas , Oncología Médica , Neoplasias/complicaciones , Neoplasias/tratamiento farmacológico , PolíticasRESUMEN
Metagenomic methods provide an experimental approach to inform the relationships between hosts and their microbial inhabitants. Previous studies have provided the conceptual realization that microbiomes are dynamic among hosts and the intimacy of relation between micro- and macroorganisms. Here, we present an intestinal microflora community analysis for members of the order Chiroptera and investigate the relative influence of variables in shaping observed microbiome relationships. The variables ranged from those considered to have ancient and long-term influences (host phylogeny and life history) to the relatively transient variable of host reproductive condition. In addition, collection locality data, representing the geographic variable, were included in analyses. Results indicate a complex influence of variables in shaping sample relationships in which signal for host phylogeny is recovered at broad taxonomic levels (family), whereas intrafamilial analyses disclosed various degrees of resolution for the remaining variables. Although cumulative probabilities of assignment indicated both reproductive condition and geography influenced relationships, comparison of ecological measures among groups revealed statistical differences between most variable classifications. For example, ranked ecological diversity was associated with host phylogeny (deeper coalescences among families were associated with more microfloral diversity), dietary strategy (herbivory generally retained higher diversity than carnivory) and reproductive condition (reproductively active females displayed more diverse microflora than nonreproductive conditions). Overall, the results of this study describe a complex process shaping microflora communities of wildlife species as well as provide avenues for future research that will further inform the nature of symbiosis between microflora communities and hosts.
Asunto(s)
Quirópteros/microbiología , Quirópteros/fisiología , Metagenoma/genética , Filogenia , Animales , Carnivoría , Femenino , Guatemala , Herbivoria , MasculinoRESUMEN
Dickeya dadantii is a plant-pathogenic enterobacterium responsible for the soft rot disease of many plants of economic importance. We present here the sequence of strain 3937, a strain widely used as a model system for research on the molecular biology and pathogenicity of this group of bacteria.