Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Plant J ; 111(4): 1203-1215, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35713985

RESUMEN

Transcriptional regulation underlies most developmental programs and physiological responses to environmental changes in plants. Transcription factors (TFs) play a key role in the regulation of gene expression by binding specifically to short DNA sequences in the regulatory regions of genes: the TF binding sites (TFBSs). In recent years, several bioinformatic tools have been developed to detect TFBSs in candidate genes, either by de novo prediction or by directly mapping experimentally known TFBSs. However, most of these tools contain information for only a few species or require multi-step procedures, and are not always intuitive for non-experienced researchers. Here we present TFBS-Discovery Tool Hub (TDTHub), a web server for quick and intuitive studies of transcriptional regulation in plants. TDTHub uses pre-computed TFBSs in 40 plant species and allows the choice of two mapping algorithms, providing a higher versatility. Besides the main TFBS enrichment tool, TDTHub includes additional tools to assist in the analysis and visualization of data. In order to demonstrate the effectiveness of TDTHub, we analyzed the transcriptional regulation of the anthocyanin biosynthesis pathway. We also analyzed the transcriptional cascades in response to jasmonate and wounding in Arabidopsis and tomato (Solanum lycopersicum), respectively. In these studies, TDTHub helped to verify the most relevant TF nodes and to propose new ones with a prominent role in these pathways. TDTHub is available at http://acrab.cnb.csic.es/TDTHub/, and it will be periodically upgraded and expanded for new species and gene annotations.


Asunto(s)
Arabidopsis , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Secuencia de Bases , Sitios de Unión , Biología Computacional/métodos , Unión Proteica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Proc Natl Acad Sci U S A ; 117(12): 6901-6909, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32165537

RESUMEN

The Evening Complex (EC), composed of the DNA binding protein LUX ARRHYTHMO (LUX) and two additional proteins EARLY FLOWERING 3 (ELF3) and ELF4, is a transcriptional repressor complex and a core component of the plant circadian clock. In addition to maintaining oscillations in clock gene expression, the EC also participates in temperature and light entrainment, acting as an important environmental sensor and conveying this information to growth and developmental pathways. However, the molecular basis for EC DNA binding specificity and temperature-dependent activity were not known. Here, we solved the structure of the DNA binding domain of LUX in complex with DNA. Residues critical for high-affinity binding and direct base readout were determined and tested via site-directed mutagenesis in vitro and in vivo. Using extensive in vitro DNA binding assays of LUX alone and in complex with ELF3 and ELF4, we demonstrate that, while LUX alone binds DNA with high affinity, the LUX-ELF3 complex is a relatively poor binder of DNA. ELF4 restores binding to the complex. In vitro, the full EC is able to act as a direct thermosensor, with stronger DNA binding at 4 °C and weaker binding at 27 °C. In addition, an excess of ELF4 is able to restore EC binding even at 27 °C. Taken together, these data suggest that ELF4 is a key modulator of thermosensitive EC activity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ritmo Circadiano , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN de Plantas/genética , Proteínas de Unión al ADN/genética
3.
Plant J ; 105(4): 855-869, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33220113

RESUMEN

Plants regulate their reproductive cycles under the influence of environmental cues, such as day length, temperature and water availability. In Solanum tuberosum (potato), vegetative reproduction via tuberization is known to be regulated by photoperiod, in a very similar way to flowering. The central clock output transcription factor CYCLING DOF FACTOR 1 (StCDF1) was shown to regulate tuberization. We now show that StCDF1, together with a long non-coding RNA (lncRNA) counterpart, named StFLORE, also regulates water loss through affecting stomatal growth and diurnal opening. Both natural and CRISPR-Cas9 mutations in the StFLORE transcript produce plants with increased sensitivity to water-limiting conditions. Conversely, elevated expression of StFLORE, both by the overexpression of StFLORE or by the downregulation of StCDF1, results in an increased tolerance to drought through reducing water loss. Although StFLORE appears to act as a natural antisense transcript, it is in turn regulated by the StCDF1 transcription factor. We further show that StCDF1 is a non-redundant regulator of tuberization that affects the expression of two other members of the potato StCDF gene family, as well as StCO genes, through binding to a canonical sequence motif. Taken together, we demonstrate that the StCDF1-StFLORE locus is important for vegetative reproduction and water homeostasis, both of which are important traits for potato plant breeding.


Asunto(s)
Proteínas de Plantas/metabolismo , Tubérculos de la Planta/crecimiento & desarrollo , ARN Largo no Codificante/metabolismo , ARN de Planta/metabolismo , Solanum tuberosum/metabolismo , Factores de Transcripción/metabolismo , Adaptación Fisiológica , Deshidratación , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Tubérculos de la Planta/metabolismo , Tubérculos de la Planta/fisiología , Regiones Promotoras Genéticas , ARN sin Sentido/metabolismo , ARN sin Sentido/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/fisiología , ARN de Planta/genética , ARN de Planta/fisiología , Solanum tuberosum/genética , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/fisiología , Factores de Transcripción/genética , Factores de Transcripción/fisiología
4.
EMBO J ; 37(23)2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30389669

RESUMEN

The Arabidopsis PIF4 and BES1/BZR1 transcription factors antagonize light signaling by facilitating co-activated expression of a large number of cell wall-loosening and auxin-related genes. While PIF4 directly activates expression of these targets, BES1 and BZR1 activity switch from a repressive to an activator function, depending on interaction with TOPLESS and other families of regulators including PIFs. However, the complexity of this regulation and its role in diurnal control of plant growth and brassinosteroid (BR) levels is little understood. We show by using a protein array that BES1, PIF4, and the BES1-PIF4 complex recognize different DNA elements, thus revealing a distinctive cis-regulatory code beneath BES1-repressive and PIF4 co-activation function. BES1 homodimers bind to conserved BRRE- and G-box elements in the BR biosynthetic promoters and inhibit their expression during the day, while elevated PIF4 competes for BES1 homodimer formation, resulting in de-repressed BR biosynthesis at dawn and in response to warmth. Our findings demonstrate a central role of PIF4 in BR synthesis activation, increased BR levels being essential to thermomorphogenic hypocotyl growth.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Brasinoesteroides/biosíntesis , Hipocótilo/crecimiento & desarrollo , Fotoperiodo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas de Unión al ADN , Regulación de la Expresión Génica de las Plantas/fisiología , Hipocótilo/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Multimerización de Proteína/fisiología
5.
Plant Cell ; 31(10): 2491-2509, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31391256

RESUMEN

The lipid-derived phytohormone jasmonoyl-isoleucine regulates plant immunity, growth and development in vascular plants by activating genome-wide transcriptional reprogramming. In Arabidopsis (Arabidopsis thaliana), this process is largely orchestrated by the master regulator MYC2 and related transcription factors (TFs). However, the TFs activating this pathway in basal plant lineages are currently unknown. We report the functional conservation of MYC-related TFs between the eudicot Arabidopsis and the liverwort Marchantia polymorpha, a plant belonging to an early diverging lineage of land plants. Phylogenetic analysis suggests that MYC function first appeared in charophycean algae and therefore predates the evolutionary appearance of any other jasmonate pathway component. M. polymorpha possesses two functionally interchangeable MYC genes, one in females and one in males. Similar to AtMYC2, MpMYCs showed nuclear localization, interaction with JASMONATE-ZIM-DOMAIN PROTEIN repressors, and regulation by light. Phenotypic and molecular characterization of loss- and gain-of-function mutants demonstrated that MpMYCs are necessary and sufficient for activating the jasmonate pathway in M. polymorpha, but unlike their Arabidopsis orthologs, do not regulate fertility. Therefore, despite 450 million years of independent evolution, MYCs are functionally conserved between bryophytes and eudicots. Genetic conservation in an early diverging lineage suggests that MYC function existed in the common ancestor of land plants and evolved from a preexisting MYC function in charophycean algae.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ciclopentanos/metabolismo , Ácidos Grasos Insaturados/farmacología , Isoleucina/análogos & derivados , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Animales , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Carofíceas/genética , Embryophyta/genética , Evolución Molecular , Ácidos Grasos Insaturados/química , Fertilidad/genética , Regulación de la Expresión Génica de las Plantas , Herbivoria/fisiología , Isoleucina/metabolismo , Luz , Marchantia/efectos de los fármacos , Marchantia/genética , Mutación , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Unión Proteica , Dominios Proteicos/genética , Proteínas Represoras/metabolismo
6.
Plant J ; 102(1): 138-152, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31755159

RESUMEN

Jasmonates are key regulators of the balance between defence and growth in plants. However, the molecular mechanisms by which activation of defence reduces growth are not yet fully understood. Here, we analyze the role of MYC transcription factors (TFs) and jasmonic acid (JA) in photomorphogenic growth. We found that multiple myc mutants share light-associated phenotypes with mutants of the phytochrome B photoreceptor, such as delayed seed germination in the dark and long hypocotyl growth. Overexpression of MYC2 in a phyB background partially suppressed its long hypocotyl phenotype. Transcriptomic analysis of multiple myc mutants confirmed that MYCs are required for full expression of red (R) light-regulated genes, including the master regulator HY5. ChIP-seq analyses revealed that MYC2 and MYC3 bind directly to the promoter of HY5 and that HY5 gene expression and protein levels are compromised in multiple myc mutants. Altogether, our results pinpoint MYCs as photomorphogenic TFs that control phytochrome responses by activating HY5 expression. This has important implications in understanding the trade-off between growth and defence as the same TFs that activate defence responses are photomorphogenic growth regulators.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Fototropismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/fisiología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes myc , Fototropismo/genética , Fototropismo/fisiología
7.
Plant J ; 99(4): 637-654, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31009122

RESUMEN

Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate-elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA-Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O-methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA-Seq data and identified the repressor protein M. truncatula plant AT-rich sequence and zinc-binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism.


Asunto(s)
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , ortoaminobenzoatos/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Medicago truncatula/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Regiones Promotoras Genéticas/genética
8.
Nat Chem Biol ; 14(5): 480-488, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29632411

RESUMEN

The phytohormone jasmonoyl-isoleucine (JA-Ile) regulates defense, growth and developmental responses in vascular plants. Bryophytes have conserved sequences for all JA-Ile signaling pathway components but lack JA-Ile. We show that, in spite of 450 million years of independent evolution, the JA-Ile receptor COI1 is functionally conserved between the bryophyte Marchantia polymorpha and the eudicot Arabidopsis thaliana but COI1 responds to different ligands in each species. We identified the ligand of Marchantia MpCOI1 as two isomeric forms of the JA-Ile precursor dinor-OPDA (dinor-cis-OPDA and dinor-iso-OPDA). We demonstrate that AtCOI1 functionally complements Mpcoi1 mutation and confers JA-Ile responsiveness and that a single-residue substitution in MpCOI1 is responsible for the evolutionary switch in ligand specificity. Our results identify the ancestral bioactive jasmonate and clarify its biosynthetic pathway, demonstrate the functional conservation of its signaling pathway, and show that JA-Ile and COI1 emergence in vascular plants required co-evolution of hormone biosynthetic complexity and receptor specificity.


Asunto(s)
Arabidopsis/metabolismo , Ciclopentanos/química , Regulación de la Expresión Génica de las Plantas , Marchantia/metabolismo , Oxilipinas/química , Hojas de la Planta/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Evolución Molecular , Prueba de Complementación Genética , Genoma de Planta , Isoleucina/análogos & derivados , Isoleucina/química , Ligandos , Marchantia/genética , Mutagénesis , Mutación , Filogenia , Reguladores del Crecimiento de las Plantas , Transducción de Señal
9.
Bull Entomol Res ; 110(4): 463-479, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31813394

RESUMEN

The tomato Mi-1 gene mediates plant resistance to whitefly Bemisia tabaci, nematodes, and aphids. Other genes are also required for this resistance, and a model of interaction between the proteins encoded by these genes was proposed. Microarray analyses were used previously to identify genes involved in plant resistance to pests or pathogens, but scarcely in resistance to insects. In the present work, the GeneChip™ Tomato Genome Array (Affymetrix®) was used to compare the transcriptional profiles of Motelle (bearing Mi-1) and Moneymaker (lacking Mi-1) cultivars, both before and after B. tabaci infestation. Ten transcripts were expressed at least twofold in uninfested Motelle than in Moneymaker, while other eight were expressed half or less. After whitefly infestation, differences between cultivars increased to 14 transcripts expressed more in Motelle than in Moneymaker and 14 transcripts less expressed. Half of these transcripts showed no differential expression before infestation. These results show the baseline differences in the tomato transcriptomic profile associated with the presence or absence of the Mi-1 gene and provide us with valuable information on candidate genes to intervene in either compatible or incompatible tomato-whitefly interactions.


Asunto(s)
Hemípteros , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Animales , Femenino , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/genética , Hojas de la Planta/metabolismo
10.
Proc Natl Acad Sci U S A ; 114(2): E245-E254, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028241

RESUMEN

Shoot-branching patterns determine key aspects of plant life and are important targets for crop breeding. However, we are still largely ignorant of the genetic networks controlling locally the most important decision during branch development: whether the axillary bud, or branch primordium, grows out to give a lateral shoot or remains dormant. Here we show that, inside the buds, the TEOSINTE BRANCHED1, CYCLOIDEA, PCF (TCP) transcription factor BRANCHED1 (BRC1) binds to and positively regulates the transcription of three related Homeodomain leucine zipper protein (HD-ZIP)-encoding genes: HOMEOBOX PROTEIN 21 (HB21), HOMEOBOX PROTEIN 40 (HB40), and HOMEOBOX PROTEIN 53 (HB53). These three genes, together with BRC1, enhance 9-CIS-EPOXICAROTENOID DIOXIGENASE 3 (NCED3) expression, lead to abscisic acid accumulation, and trigger hormone response, thus causing suppression of bud development. This TCP/HD-ZIP genetic module seems to be conserved in dicot and monocotyledonous species to prevent branching under light-limiting conditions.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Dioxigenasas/genética , Proteínas de Plantas/genética , Brotes de la Planta/metabolismo , Factores de Transcripción/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brotes de la Planta/genética , Transducción de Señal , Factores de Transcripción/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(29): E5995-E6004, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28673986

RESUMEN

The plant hormone cytokinin affects a diverse array of growth and development processes and responses to the environment. How a signaling molecule mediates such a diverse array of outputs and how these response pathways are integrated with other inputs remain fundamental questions in plant biology. To this end, we characterized the transcriptional network initiated by the type-B ARABIDOPSIS RESPONSE REGULATORs (ARRs) that mediate the cytokinin primary response, making use of chromatin immunoprecipitation sequencing (ChIP-seq), protein-binding microarrays, and transcriptomic approaches. By ectopic overexpression of ARR10, Arabidopsis lines hypersensitive to cytokinin were generated and used to clarify the role of cytokinin in regulation of various physiological responses. ChIP-seq was used to identify the cytokinin-dependent targets for ARR10, thereby defining a crucial link between the cytokinin primary-response pathway and the transcriptional changes that mediate physiological responses to this phytohormone. Binding of ARR10 was induced by cytokinin with binding sites enriched toward the transcriptional start sites for both induced and repressed genes. Three type-B ARR DNA-binding motifs, determined by use of protein-binding microarrays, were enriched at ARR10 binding sites, confirming their physiological relevance. WUSCHEL was identified as a direct target of ARR10, with its cytokinin-enhanced expression resulting in enhanced shooting in tissue culture. Results from our analyses shed light on the physiological role of the type-B ARRs in regulating the cytokinin response, mechanism of type-B ARR activation, and basis by which cytokinin regulates diverse aspects of growth and development as well as responses to biotic and abiotic factors.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Citocininas/metabolismo , Proteínas de Unión al ADN/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Sitios de Unión , Inmunoprecipitación de Cromatina , Citocininas/genética , Citocininas/farmacología , ADN de Plantas/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genoma de Planta , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Plant Physiol ; 178(1): 130-147, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30002259

RESUMEN

Fundamental questions regarding how chloroplasts develop from proplastids remain poorly understood despite their central importance to plant life. Two families of nuclear transcription factors, the GATA NITRATE-INDUCIBLE CARBON-METABOLISM-INVOLVED (GNC) and GOLDEN TWO-LIKE (GLK) families, have been implicated in directly and positively regulating chloroplast development. Here, we determined the degree of functional overlap between the two transcription factor families in Arabidopsis (Arabidopsis thaliana), characterizing their ability to regulate chloroplast biogenesis both alone and in concert. We determined the DNA-binding motifs for GNC and GLK2 using protein-binding microarrays; the enrichment of these motifs in transcriptome datasets indicates that GNC and GLK2 are repressors and activators of gene expression, respectively. ChIP-seq analysis of GNC identified PHYTOCHROME INTERACTING FACTOR and brassinosteroid activity genes as targets whose repression by GNC facilitates chloroplast biogenesis. In addition, GNC targets and represses genes involved in ERECTA signaling and thereby facilitates stomatal development. Our results define key regulatory features of the GNC and GLK transcription factor families that contribute to the control of chloroplast biogenesis and photosynthetic activity, including areas of independence and cross talk.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cloroplastos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secuencia de Bases , Sitios de Unión/genética , Clorofila/metabolismo , Cloroplastos/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutación , Fotosíntesis/genética , Plantas Modificadas Genéticamente , Unión Proteica , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Factores de Transcripción/genética
13.
Plant Cell ; 27(11): 3160-74, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26530088

RESUMEN

The plant hormone jasmonate (JA) plays an important role in regulating growth, development, and immunity. Activation of the JA-signaling pathway is based on the hormone-triggered ubiquitination and removal of transcriptional repressors (JASMONATE-ZIM DOMAIN [JAZ] proteins) by an SCF receptor complex (SCF(COI1)/JAZ). This removal allows the rapid activation of transcription factors (TFs) triggering a multitude of downstream responses. Identification of TFs bound by the JAZ proteins is essential to better understand how the JA-signaling pathway modulates and integrates different responses. In this study, we found that the JAZ3 repressor physically interacts with the YABBY (YAB) family transcription factor FILAMENTOUS FLOWER (FIL)/YAB1. In Arabidopsis thaliana, FIL regulates developmental processes such as axial patterning and growth of lateral organs, shoot apical meristem activity, and inflorescence phyllotaxy. Phenotypic analysis of JA-regulated responses in loss- and gain-of-function FIL lines suggested that YABs function as transcriptional activators of JA-triggered responses. Moreover, we show that MYB75, a component of the WD-repeat/bHLH/MYB complex regulating anthocyanin production, is a direct transcriptional target of FIL. We propose that JAZ3 interacts with YABs to attenuate their transcriptional function. Upon perception of JA signal, degradation of JAZ3 by the SCF(COI1) complex releases YABs to activate a subset of JA-regulated genes in leaves leading to anthocyanin accumulation, chlorophyll loss, and reduced bacterial defense.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Ciclopentanos/farmacología , Oxilipinas/farmacología , Antocianinas/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/microbiología , Secuencia de Bases , Sitios de Unión , Modelos Biológicos , Datos de Secuencia Molecular , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas/genética , Unión Proteica/efectos de los fármacos , Pseudomonas syringae/efectos de los fármacos , Pseudomonas syringae/fisiología
14.
Plant J ; 85(1): 134-47, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26662515

RESUMEN

The cytokinin response factors (CRFs) are a group of related AP2/ERF transcription factors that are transcriptionally induced by cytokinin. Here we explore the role of the CRFs in Arabidopsis thaliana growth and development by analyzing lines with decreased and increased CRF function. While single crf mutations have no appreciable phenotypes, disruption of multiple CRFs results in larger rosettes, delayed leaf senescence, a smaller root apical meristem (RAM), reduced primary and lateral root growth, and, in etiolated seedlings, shorter hypocotyls. In contrast, overexpression of CRFs generally results in the opposite phenotypes. The crf1,2,5,6 quadruple mutant is embryo lethal, indicating that CRF function is essential for embryo development. Disruption of the CRFs results in partially insensitivity to cytokinin in a root elongation assay and affects the basal expression of a significant number of cytokinin-regulated genes, including the type-A ARRs, although it does not impair the cytokinin induction of the type-A ARRs. Genes encoding homeobox transcription factors are mis-expressed in the crf1,3,5,6 mutant, including STIMPY/WOX9 that is required for root and shoot apical meristem maintenance roots and which has previously been linked to cytokinin. These results indicate that the CRF transcription factors play important roles in multiple aspects of plant growth and development, in part through a complex interaction with cytokinin signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Citocininas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/fisiología , Mutación , Fenotipo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/fisiología , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Proc Natl Acad Sci U S A ; 111(6): 2367-72, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24477691

RESUMEN

Transcription factors (TFs) regulate gene expression through binding to cis-regulatory specific sequences in the promoters of their target genes. In contrast to the genetic code, the transcriptional regulatory code is far from being deciphered and is determined by sequence specificity of TFs, combinatorial cooperation between TFs and chromatin competence. Here we addressed one of these determinants by characterizing the target sequence specificity of 63 plant TFs representing 25 families, using protein-binding microarrays. Remarkably, almost half of these TFs recognized secondary motifs, which in some cases were completely unrelated to the primary element. Analyses of coregulated genes and transcriptomic data from TFs mutants showed the functional significance of over 80% of all identified sequences and of at least one target sequence per TF. Moreover, combining the target sequence information with coexpression analysis we could predict the function of a TF as activator or repressor through a particular DNA sequence. Our data support the correlation between cis-regulatory elements and the sequence determined in vitro using the protein-binding microarray and provides a framework to explore regulatory networks in plants.


Asunto(s)
Arabidopsis/metabolismo , ADN de Plantas/metabolismo , Genes de Plantas , Factores de Transcripción/metabolismo , Arabidopsis/genética , Sitios de Unión , ADN de Plantas/química
16.
Proc Natl Acad Sci U S A ; 111(41): 14947-52, 2014 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-25271326

RESUMEN

To cope with growth in low-phosphate (Pi) soils, plants have evolved adaptive responses that involve both developmental and metabolic changes. Phosphate Starvation Response 1 (PHR1) and related transcription factors play a central role in the control of Pi starvation responses (PSRs). How Pi levels control PHR1 activity, and thus PSRs, remains to be elucidated. Here, we identify a direct Pi-dependent inhibitor of PHR1 in Arabidopsis, SPX1, a nuclear protein that shares the SPX domain with yeast Pi sensors and with several Pi starvation signaling proteins from plants. Double mutation of SPX1 and of a related gene, SPX2, resulted in molecular and physiological changes indicative of increased PHR1 activity in plants grown in Pi-sufficient conditions or after Pi refeeding of Pi-starved plants but had only a limited effect on PHR1 activity in Pi-starved plants. These data indicate that SPX1 and SPX2 have a cellular Pi-dependent inhibitory effect on PHR1. Coimmunoprecipitation assays showed that the SPX1/PHR1 interaction in planta is highly Pi-dependent. DNA-binding and pull-down assays with bacterially expressed, affinity-purified tagged SPX1 and ΔPHR1 proteins showed that SPX1 is a competitive inhibitor of PHR1 binding to its recognition sequence, and that its efficiency is highly dependent on the presence of Pi or phosphite, a nonmetabolizable Pi analog that can repress PSRs. The relative strength of the SPX1/PHR1 interaction is thus directly influenced by Pi, providing a link between Pi perception and signaling.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Nucleares/metabolismo , Fosfatos/farmacología , Factores de Transcripción/metabolismo , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/genética , ADN de Plantas/metabolismo , Modelos Biológicos , Mutación/genética , Proteínas Nucleares/genética , Unión Proteica/efectos de los fármacos , Factores de Transcripción/antagonistas & inhibidores
17.
Plant J ; 71(5): 699-711, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22536829

RESUMEN

Plant growth is strongly influenced by the presence of neighbors that compete for light resources. In response to vegetational shading shade-intolerant plants such as Arabidopsis display a suite of developmental responses known as the shade-avoidance syndrome (SAS). The phytochrome B (phyB) photoreceptor is the major light sensor to mediate this adaptive response. Control of the SAS occurs in part with phyB, which controls protein abundance of phytochrome-interacting factors 4 and 5 (PIF4 and PIF5) directly. The shade-avoidance response also requires rapid biosynthesis of auxin and its transport to promote elongation growth. The identification of genome-wide PIF5-binding sites during shade avoidance revealed that this bHLH transcription factor regulates the expression of a subset of previously identified SAS genes. Moreover our study suggests that PIF4 and PIF5 regulate elongation growth by controlling directly the expression of genes that code for auxin biosynthesis and auxin signaling components.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Genes de Plantas , Luz , Plantones/crecimiento & desarrollo , Plantones/metabolismo
18.
Plant J ; 66(4): 700-11, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21284757

RESUMEN

Transcriptional regulation depends on the specificity of transcription factors (TFs) recognizing cis regulatory sequences in the promoters of target genes. Current knowledge about DNA-binding specificities of TFs is based mostly on low- to medium-throughput methodologies, revealing DNA motifs bound by a TF with high affinity. These strategies are time-consuming and often fail to identify DNA motifs recognized by a TF with lower affinity but retaining biological relevance. Here we report on the development of a protein-binding microarray (PBM11) containing all possible double-stranded 11-mers for the determination of DNA-binding specificities of TFs. The large number of sequences in the PBM11 allows accurate and high-throughput quantification of TF-binding sites, outperforming previous methods. We applied this tool to determine binding site specificities of two Arabidopsis TFs, MYC2 and ERF1, rendering the G-box and the GCC-box, respectively, as their highest-affinity binding sites. In addition, we identified variants of the G-box recognized by MYC2 with high and medium affinity, whereas ERF1 only recognized GCC variants with low affinity, indicating that ERF1 binding to DNA has stricter base requirements than MYC2. Analysis of transcriptomic data revealed that high- and medium-affinity binding sites have biological significance, probably representing relevant cis-acting elements in vivo. Comparison of promoter sequences with putative orthologs from closely related species demonstrated a high degree of conservation of all the identified DNA elements. The combination of PBM11, transcriptomic data and phylogenomic footprinting provides a straightforward method for the prediction of biologically active cis-elements, and thus for identification of in vivo DNA targets of TFs.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Agrobacterium tumefaciens , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Sitios de Unión , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Mutagénesis Sitio-Dirigida , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Filogenia , Regiones Promotoras Genéticas , Especificidad por Sustrato , Nicotiana/genética , Nicotiana/metabolismo
19.
Methods Mol Biol ; 2354: 123-142, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34448158

RESUMEN

Plant growth and adaptation to environmental fluctuations involve a tight control of cellular processes which, to a great extent, are mediated by changes at the transcriptional level. This regulation is exerted by transcription factors (TFs), a group of regulatory proteins that control gene expression by directly binding to the gene promoter regions via their cognate TF-binding sites (TFBS). The nature of TFBS defines the pattern of expression of the various plant loci, the precise combinatorial assembly of these elements being key in conferring plant's adaptation ability and in domestication. As such, TFs are main potential targets for biotechnological interventions, prompting in the last decade notable protein-DNA interaction efforts toward definition of their TFBS. Distinct methods based on in vivo or in vitro approaches defined the TFBS for many TFs, mainly in Arabidopsis, but comprehensive information on the transcriptional networks for many regulators is still lacking, especially in crops. In this chapter, detailed protocols for DAP-seq studies to unbiased identification of TFBS in potato are provided. This methodology relies on the affinity purification of genomic DNA-protein complexes in vitro, and high-throughput sequencing of the eluted DNA fragments. DAP-seq outperforms other in vitro DNA-motif definition strategies, such as protein-binding microarrays and SELEX-seq, since the protein of interest is directly bound to the genomic DNA extracted from plants yielding all the potential sites bound by the TF in the genome. Actually, data generated from DAP-seq experiments are highly similar to those out of ChIP-seq methods, but are generated much faster. We also provide a standard procedure to the analysis of the DAP-seq data, addressed to non-experienced users, that involves two consecutive steps: (1) processing of raw data (trimming, filtering, and read alignment) and (2) peak calling and identification of enriched motifs. This method allows identification of the binding profiles of dozens of TFs in crops, in a timely manner.


Asunto(s)
Solanum tuberosum , Arabidopsis/genética , Sitios de Unión , ADN , Motivos de Nucleótidos , Solanum tuberosum/genética , Factores de Transcripción/genética
20.
Plant Commun ; 2(6): 100232, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34778747

RESUMEN

Transcription factors (TFs) regulate gene expression by binding to cis-regulatory sequences in the promoters of target genes. Recent research is helping to decipher in part the cis-regulatory code in eukaryotes, including plants, but it is not yet fully understood how paralogous TFs select their targets. Here we addressed this question by studying several proteins of the basic helix-loop-helix (bHLH) family of plant TFs, all of which recognize the same DNA motif. We focused on the MYC-related group of bHLHs, that redundantly regulate the jasmonate (JA) signaling pathway, and we observed a high correspondence between DNA-binding profiles in vitro and MYC function in vivo. We demonstrated that A/T-rich modules flanking the MYC-binding motif, conserved from bryophytes to higher plants, are essential for TF recognition. We observed particular DNA-shape features associated with A/T modules, indicating that the DNA shape may contribute to MYC DNA binding. We extended this analysis to 20 additional bHLHs and observed correspondence between in vitro binding and protein function, but it could not be attributed to A/T modules as in MYCs. We conclude that different bHLHs may have their own codes for DNA binding and specific selection of targets that, at least in the case of MYCs, depend on the TF-DNA interplay.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclopentanos/metabolismo , Proteínas de Unión al ADN/metabolismo , Oxilipinas/metabolismo , ADN/metabolismo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA