Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell ; 174(5): 1264-1276.e15, 2018 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-30057116

RESUMEN

During corticogenesis, ventricular zone progenitors sequentially generate distinct subtypes of neurons, accounting for the diversity of neocortical cells and the circuits they form. While activity-dependent processes are critical for the differentiation and circuit assembly of postmitotic neurons, how bioelectrical processes affect nonexcitable cells, such as progenitors, remains largely unknown. Here, we reveal that, in the developing mouse neocortex, ventricular zone progenitors become more hyperpolarized as they generate successive subtypes of neurons. Experimental in vivo hyperpolarization shifted the transcriptional programs and division modes of these progenitors to a later developmental status, with precocious generation of intermediate progenitors and a forward shift in the laminar, molecular, morphological, and circuit features of their neuronal progeny. These effects occurred through inhibition of the Wnt-beta-catenin signaling pathway by hyperpolarization. Thus, during corticogenesis, bioelectric membrane properties are permissive for specific molecular pathways to coordinate the temporal progression of progenitor developmental programs and thus neocortical neuron diversity.


Asunto(s)
Potenciales de la Membrana , Neocórtex/embriología , Neuronas/metabolismo , Células Madre/citología , Animales , Encéfalo/citología , Encéfalo/embriología , Diferenciación Celular , Progresión de la Enfermedad , Electroporación , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Neocórtex/citología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neurogénesis , Canales de Potasio de Rectificación Interna/metabolismo , Análisis de Secuencia de ARN , Transducción de Señal , Factores de Tiempo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
2.
Nature ; 538(7623): 96-98, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27669022

RESUMEN

Modality-specific sensory inputs from individual sense organs are processed in parallel in distinct areas of the neocortex. For each sensory modality, input follows a cortico-thalamo-cortical loop in which a 'first-order' exteroceptive thalamic nucleus sends peripheral input to the primary sensory cortex, which projects back to a 'higher order' thalamic nucleus that targets a secondary sensory cortex. This conserved circuit motif raises the possibility that shared genetic programs exist across sensory modalities. Here we report that, despite their association with distinct sensory modalities, first-order nuclei in mice are genetically homologous across somatosensory, visual, and auditory pathways, as are higher order nuclei. We further reveal peripheral input-dependent control over the transcriptional identity and connectivity of first-order nuclei by showing that input ablation leads to induction of higher-order-type transcriptional programs and rewiring of higher-order-directed descending cortical input to deprived first-order nuclei. These findings uncover an input-dependent genetic logic for the design and plasticity of sensory pathways, in which conserved developmental programs lead to conserved circuit motifs across sensory modalities.


Asunto(s)
Vías Aferentes/fisiología , Modelos Genéticos , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Vías Aferentes/citología , Animales , Vías Auditivas/citología , Vías Auditivas/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Cuerpos Geniculados/citología , Cuerpos Geniculados/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Corteza Somatosensorial/fisiología , Núcleos Talámicos/citología , Núcleos Talámicos/fisiología , Transcripción Genética , Vías Visuales/citología , Vías Visuales/fisiología
3.
Eur J Neurosci ; 39(9): 1455-64, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24580836

RESUMEN

Two main neuronal pathways connect facial whiskers to the somatosensory cortex in rodents: (i) the lemniscal pathway, which originates in the brainstem principal trigeminal nucleus and is relayed in the ventroposterior thalamic nucleus and (ii) the paralemniscal pathway, originating in the spinal trigeminal nucleus and relayed in the posterior thalamic nucleus. While lemniscal neurons are readily activated by whisker contacts, the contribution of paralemniscal neurons to perception is less clear. Here, we functionally investigated these pathways by manipulating input from the whisker pad in freely moving mice. We report that while lemniscal neurons readily respond to neonatal infraorbital nerve sectioning or whisker contacts in vivo, paralemniscal neurons do not detectably respond to these environmental changes. However, the paralemniscal pathway is specifically activated upon noxious stimulation of the whisker pad. These findings reveal a nociceptive function for paralemniscal neurons in vivo that may critically inform context-specific behaviour during environmental exploration.


Asunto(s)
Nocicepción/fisiología , Núcleo Espinal del Trigémino/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo , Núcleo Espinal del Trigémino/fisiología , Vibrisas/inervación
4.
Eur J Neurosci ; 35(10): 1533-9, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22606999

RESUMEN

The topographical mapping of input is a fundamental organizing principle of sensory pathways. In the somatosensory system, a precise topographical representation of the face is first generated in the brainstem and then faithfully replicated in the thalamus and cortex. Although our knowledge of the distinct polysynaptic pathways that link cutaneous mechanoreceptors of the face with neocortical neurons has recently expanded, the molecular mechanisms controlling their neuron-type-specific assembly during development remain poorly understood. The increasing availability of genetic tools that enable manipulation of these developing circuits with cellular resolution now opens new perspectives in our understanding of the molecular mechanisms through which input from the periphery is converted into patterned central pathways.


Asunto(s)
Vías Aferentes/fisiología , Mapeo Encefálico , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Animales , Humanos , Modelos Neurológicos , Neuronas/clasificación , Corteza Somatosensorial/citología , Tálamo/citología , Vibrisas/inervación
5.
Nat Commun ; 8(1): 2015, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29222517

RESUMEN

Input from the sensory organs is required to pattern neurons into topographical maps during development. Dendritic complexity critically determines this patterning process; yet, how signals from the periphery act to control dendritic maturation is unclear. Here, using genetic and surgical manipulations of sensory input in mouse somatosensory thalamocortical neurons, we show that membrane excitability is a critical component of dendritic development. Using a combination of genetic approaches, we find that ablation of N-methyl-D-aspartate (NMDA) receptors during postnatal development leads to epigenetic repression of Kv1.1-type potassium channels, increased excitability, and impaired dendritic maturation. Lesions to whisker input pathways had similar effects. Overexpression of Kv1.1 was sufficient to enable dendritic maturation in the absence of sensory input. Thus, Kv1.1 acts to tune neuronal excitability and maintain it within a physiological range, allowing dendritic maturation to proceed. Together, these results reveal an input-dependent control over neuronal excitability and dendritic complexity in the development and plasticity of sensory pathways.


Asunto(s)
Dendritas/fisiología , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Animales , Femenino , Perfilación de la Expresión Génica , Canal de Potasio Kv.1.1/genética , Canal de Potasio Kv.1.1/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Corteza Somatosensorial/citología , Transmisión Sináptica/fisiología , Tálamo/citología , Vibrisas/inervación , Vibrisas/fisiología
6.
Elife ; 5: e09531, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26814051

RESUMEN

During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features.


Asunto(s)
Epigénesis Genética , Neuronas/fisiología , Corteza Somatosensorial/embriología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Proteínas con Dominio LIM/metabolismo , Proteínas de Unión a la Región de Fijación a la Matriz/análisis , Ratones , Proteínas Represoras/análisis , Factores de Transcripción/análisis , Proteínas Supresoras de Tumor/análisis
7.
Neuron ; 89(3): 494-506, 2016 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-26804994

RESUMEN

Neuronal subtype-specific transcription factors (TFs) instruct key features of neuronal function and connectivity. Activity-dependent mechanisms also contribute to wiring and circuit assembly, but whether and how they relate to TF-directed neuronal differentiation is poorly investigated. Here we demonstrate that the TF Cux1 controls the formation of the layer II/III corpus callosum (CC) projections through the developmental transcriptional regulation of Kv1 voltage-dependent potassium channels and the resulting postnatal switch to a Kv1-dependent firing mode. Loss of Cux1 function led to a decrease in the expression of Kv1 transcripts, aberrant firing responses, and selective loss of CC contralateral innervation. Firing and innervation were rescued by re-expression of Kv1 or postnatal reactivation of Cux1. Knocking down Kv1 mimicked Cux1-mediated CC axonal loss. These findings reveal that activity-dependent processes are central bona fide components of neuronal TF-differentiation programs and establish the importance of intrinsic firing modes in circuit assembly within the neocortex.


Asunto(s)
Potenciales de Acción/fisiología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Neuronas/fisiología , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Canales de Potasio de la Superfamilia Shaker/fisiología , Animales , Cuerpo Calloso/citología , Cuerpo Calloso/crecimiento & desarrollo , Cuerpo Calloso/fisiología , Técnicas de Silenciamiento del Gen , Ratones , Ratones Transgénicos , Cultivo Primario de Células , Canales de Potasio de la Superfamilia Shaker/biosíntesis , Canales de Potasio de la Superfamilia Shaker/genética
8.
Neurobiol Aging ; 33(9): 2125-37, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21816512

RESUMEN

This study was aimed to investigate the potential neuroprotective effect of neuropeptide Y (NPY) on the survival of dopaminergic cells in both in vitro and in animal models of Parkinson's disease (PD). NPY protected human SH-SY5Y dopaminergic neuroblastoma cells from 6-hydroxydopamine-induced toxicity. In rat and mice models of PD, striatal injection of NPY preserved the nigrostriatal dopamine pathway from degeneration as evidenced by quantification of (1) tyrosine hydroxylase (TH)-positive cells in the substantia nigra pars compacta, levels of (2) striatal tyrosine hydroxylase and dopamine transporter, (3) dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) as well as (4) rotational behavior. NPY had no neuroprotective effects in mice treated with Y(2) receptor antagonist or in transgenic mice deficient for Y(2) receptor suggesting that NPY effects are mediated through this receptor. Stimulation of Y(2) receptor by NPY triggered the activation of both the ERK1/2 and Akt pathways but did not modify levels of brain derived neurotrophic factor (BDNF) or glial cell line-derived neurotrophic factor. These results open new perspectives in neuroprotective therapies using NPY and suggest potential beneficial effects in PD.


Asunto(s)
Neuropéptido Y/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Enfermedad de Parkinson/prevención & control , Adrenérgicos/toxicidad , Análisis de Varianza , Animales , Animales Recién Nacidos , Arginina/análogos & derivados , Arginina/farmacología , Autorradiografía , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Inhibidores Enzimáticos/farmacología , Femenino , Lateralidad Funcional , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroblastoma/patología , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/prevención & control , Nortropanos/farmacocinética , Oligopéptidos/uso terapéutico , Oxidopamina/toxicidad , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/etiología , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Ratas , Ratas Wistar , Receptores de Neuropéptido Y/agonistas , Receptores de Neuropéptido Y/antagonistas & inhibidores , Receptores de Neuropéptido Y/deficiencia , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Tirosina 3-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA