Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Chem Soc Rev ; 52(13): 4292-4312, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37309247

RESUMEN

Metal-organic framework (MOF) thin films could be used for ion/molecular sieving, sensing, catalysis, and energy storage, but thus far no large-scale applications are known. One of the reasons is the lack of convenient and controllable fabrication methods. This work reviews the cathodic deposition of MOF films, which has advantages (e.g., simple operations, mild conditions, and controllable MOF film thickness/morphology) over other reported techniques. Accordingly, we discuss the mechanism of the cathodic deposition of MOF films which consists of the electrochemically triggered deprotonation of organic linkers and the formation of inorganic building blocks. Thereafter, the main applications of cathodically deposited MOF films are introduced with the aim of showing this technique's wide-ranging applications. Finally, we give the remaining issues and outlooks of the cathodic deposition of MOF films to drive its future development.

2.
Angew Chem Int Ed Engl ; 63(27): e202401817, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38652758

RESUMEN

Glass metal-organic framework (MOF) films can be fabricated from their crystalline counterparts through a melt-quenching process and are prospective candidates for gas separation because of the elimination of the grain boundaries in crystalline MOF films. However, current techniques are limited to producing glass MOF films with a thickness of tens of micrometers, which leads to ultralow gas permeances. Here, we report a novel cathodic deposition-assisted synthesis of glass ZIF-62 films with a thickness as low as ~1 µm. Electrochemical analyses and deposition experiments suggest that the cathodic deposition can lead to pure crystalline ZIF-62 films with a controllable thickness of ~2 µm to ~15 µm. Accordingly, glass ZIF-62 films with a thickness of ~1 µm to ~10 µm can be obtained after a thermal treatment. The fabricated defect-free glass ZIF-62 film measuring 2 µm in thickness shows a remarkable CO2/N2 and CO2/CH4 selectivity of 31.4 and 33.4, respectively, with a CO2 permeance which is over 30 times higher than the best-performing glass ZIF-62 films in literature.

3.
Chemistry ; 29(62): e202302338, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37556185

RESUMEN

The deposition of metal-organic framework (MOF) films with defined exposed facets is important to enhance the performance of these films for, for example, catalysis or separations. In this work, MOF films with specific exposed facets are electrodeposited anodically on various substrates (e. g. on copper-sputtered Si wafers, copper meshes, copper foams, and polypropylene membranes). The influence of the deposition parameters, including the pH of the solution, current density, concentration of linker, and solvent, on the exposed facets of the deposited MOFs was investigated. The results suggest that precise control over the supersaturation during anodic deposition is a possible strategy for synthesizing MOF crystals with well-defined exposed facets. This approach provides a powerful toolbox for various applications requiring crystal facet control of MOF films.

4.
Soft Matter ; 19(36): 6896-6902, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37606644

RESUMEN

The motion of self-propelling microswimmers is significantly affected by confinement, which can enhance or reduce their mobility and also steer the direction of their propulsion. While their interactions with solid boundaries have already received considerable attention, many aspects of the influence of liquid-liquid interfaces (LLI) on active particle propulsion still remain unexplored. In this work, we studied the adsorption and motion of bimetallic Janus sideways propelled rods dispersed at the interface between an aqueous solution of hydrogen peroxide and oil. The wetting properties of the bimetallic rods result in a wide distribution of their velocities at the LLI. While a fraction of rods remain immotile, we note a significant enhancement of motility for the rest of the particles with velocities of up to 8 times higher in comparison to those observed near a solid wall. Liquid-liquid interfaces, therefore, can provide a new way to regulate the propulsion of bimetallic particles.

5.
Phys Chem Chem Phys ; 25(32): 21397-21407, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37530427

RESUMEN

Electrowinning is regarded as a clean process to recover neodymium metal from secondary sources such as spent Nd-Fe-B permanent magnets, but the current methods are severely limited by a high energy consumption (molten salts), or by the high costs and environmental impact of the electrolyte components (ionic liquids). Therefore, there is a demand for more sustainable electrowinning methods for the recovery of neodymium metal. Inspired by our own previous work and the work of others, we developed new fluorine-free organic electrolytes that enable the electrodeposition of neodymium metal at room temperature. The electrolytes consist of solvated neodymium borohydride, Nd(BH4)3, dissolved in the ether solvents tetrahydrofuran (THF), 2-methyltetrahydrofuran (2-MeTHF), 1,2-dimethoxyethane (DME) and diethylene glycol dimethyl ether (diglyme, G2), and these complexes can be prepared entirely from non-fluorinated precursors such as neodymium(III) chloride (NdCl3) and sodium borohydride (NaBH4). In contrast to our previous bis(trifluoromethylsulfonyl)imide-containing electrolytes, electrodeposition of neodymium proceeds over time without significant loss of current density, indicating a higher stability against unwanted side-reactions that lead to passivation of the deposit on the electrode. Characterization of the deposits by scanning electron microscopy (SEM), energy-dispersive X-ray fluorescence (EDX), and X-ray photoelectron spectroscopy (XPS) unambiguously indicated the presence of neodymium metal.

6.
Small ; 18(4): e2103561, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34761518

RESUMEN

Cobalt phosphides electrocatalysts have great potential for water splitting, but the unclear active sides hinder the further development of cobalt phosphides. Wherein, three different cobalt phosphides with the same hollow structure morphology (CoP-HS, CoP2 -HS, CoP3 -HS) based on the same sacrificial template of ZIF-67 are prepared. Surprisingly, these cobalt phosphides exhibit similar OER performances but quite different HER performances. The identical OER performance of these CoPx -HS in alkaline solution is attributed to the similar surface reconstruction to CoOOH. CoP-HS exhibits the best catalytic activity for HER among these CoPx -HS in both acidic and alkaline media, originating from the adjusted electronic density of phosphorus to affect absorption-desorption process on H. Moreover, the calculated ΔGH* based on P-sites of CoP-HS follows a quite similar trend with the normalized overpotential and Tafel slope, indicating the important role of P-sites for the HER process. Moreover, CoP-HS displays good performance (cell voltage of 1.67 V at a current density of 50 mA cm-2 ) and high stability in 1 M KOH. For the first time, this work detailly presents the critical role of phosphorus in cobalt-based phosphides for water splitting, which provides the guidance for future investigations on transition metal phosphides from material design to mechanism understanding.

7.
Soft Matter ; 17(9): 2369-2373, 2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33606868

RESUMEN

A possible application of self-propelling particles is the transport of microscopic cargo. Maximizing the collection and transport efficiency of particulate matter requires the area swept by the moving particle to be as large as possible. One such particle geometry are rods propelled perpendicular to their long axis, that act as "sweepers" for collecting particles. Here we report on the required Janus coating to achieve such motion, and on the dynamics of the collection and transport of microscopic cargo by sideways propelled Janus rods.

8.
Phys Chem Chem Phys ; 23(29): 15492-15502, 2021 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-34142695

RESUMEN

The electrochemical behavior and electrodeposition of gallium was studied in a non-aqueous electrolyte comprising of gallium(iii) chloride and 1,2-dimethoxyethane (DME). Electrochemical quartz crystal microbalance (EQCM) and rotating ring disk electrode (RRDE) measurements indicate that reduction of gallium(iii) is a two-step process: first from gallium(iii) to gallium(i), and then from gallium(i) to gallium(0). The morphology and elemental composition of the electrodeposited layer were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Metallic gallium was deposited as spheres with diameters of several hundred nanometers that were stacked on top of each other. X-ray photoelectron spectroscopy (XPS) revealed that each gallium sphere was covered by a thin gallium oxide shell. Electrochemical experiments indicated that these oxide layers are electrically conductive, as gallium can be electrodeposited and partially stripped on or from the layer of spheres below. This was further evidenced by simultaneous electrodeposition of gallium and indium, using indium as a tracer. Electrodeposition of gallium from an O2-containing electrolyte resulted in spheres with smaller diameters. This was due to the formation thicker oxide shells, through which diffusion of gallium atoms that were electrodeposited on the surface, was slower. The concentration of gallium adatoms on top of the gallium spheres to form a new sphere therefore reaches the critical concentration for nucleating a new gallium sphere sooner, leading to smaller spheres.

9.
Phys Chem Chem Phys ; 23(15): 9070-9079, 2021 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-33885082

RESUMEN

A new class of organic electrolytes has been developed for the electrodeposition of rare-earth metals at room temperature. These electrolytes consist of a rare-earth bis(trifluoromethylsulfonyl)imide or chloride salt and a borohydride salt, dissolved in the ether solvents 1,2-dimethoxyethane or 2-methyltetrahydrofuran. In these electrolytes, a soluble lanthanide(iii) borohydride complex [Ln(BH4)4]- is formed, which allows for the electrodeposition of neodymium- or dysprosium-containing layers. The electrochemistry of these electrolytes was characterized by cyclic voltammetry. The deposits were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray fluorescence (EDX) and X-ray photoelectron spectroscopy (XPS), and the results suggest the presence of metallic neodymium and dysprosium.

10.
Molecules ; 26(11)2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34200479

RESUMEN

Fibers made from CNTs (CNT fibers) have the potential to form high-strength, lightweight materials with superior electrical conductivity. CNT fibers have attracted great attention in relation to various applications, in particular as conductive electrodes in energy applications, such as capacitors, lithium-ion batteries, and solar cells. Among these, wire-shaped supercapacitors demonstrate various advantages for use in lightweight and wearable electronics. However, making electrodes with uniform structures and desirable electrochemical performances still remains a challenge. In this study, dry-spun CNT fibers from CNT carpets were homogeneously loaded with MnO2 nanoflakes through the treatment of KMnO4. These functionalized fibers were systematically characterized in terms of their morphology, surface and mechanical properties, and electrochemical performance. The resulting MnO2-CNT fiber electrode showed high specific capacitance (231.3 F/g) in a Na2SO4 electrolyte, 23 times higher than the specific capacitance of the bare CNT fibers. The symmetric wire-shaped supercapacitor composed of CNT-MnO2 fiber electrodes and a PVA/H3PO4 electrolyte possesses an energy density of 86 nWh/cm and good cycling performance. Combined with its light weight and high flexibility, this CNT-based wire-shaped supercapacitor shows promise for applications in flexible and wearable energy storage devices.

11.
Angew Chem Int Ed Engl ; 60(47): 24950-24957, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34543511

RESUMEN

Metal-organic framework (MOF) films can be made by cathodic electrodeposition, where a Brønsted base is formed electrochemically which deprotonates the MOF linkers that are present in solution as undissociated/partially dissociated weak acids. However, the co-deposition of metal and the narrow range of possible metal nodes limit the scope of this method. In this work, we propose the use of hydrogen peroxide (hydrogen peroxide assisted cathodic deposition or HPACD), to overcome these limitations. Electrochemical measurements indicate that in DMF, hydrogen peroxide is reduced to superoxide anions that deprotonate the carboxylic ligands. This single-electron reduction happens at much higher potentials than all previous reported methods. This prevents the co-deposition of metal and extends the range of possible metal nodes. Various pure MOF films (HKUST-1, MIL-53(Fe) and MOF-5) were prepared via this approach. HPACD was also used for the preparation of patterned MOF films and of flexible Cu-BTC coated paper membranes which reject 99.1 % of Rose Bengal from water with a permeance of 8.4 L m-2 h-1 bar-1 .

12.
Phys Chem Chem Phys ; 22(42): 24526-24534, 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33090148

RESUMEN

The electrochemical behavior and electrodeposition of indium was investigated at 26 °C and 160 °C from a solution composed of indium(iii) methanesulfonate and dimethylsulfoxide (DMSO). Indium(iii) methanesulfonate was synthesized from indium(iii) oxide and methanesulfonic acid (MSA). Cyclic voltammetry, quartz crystal microbalance measurements and rotating ring disk electrode experiments indicated that reduction of indium(iii) to both indium(i) and indium(0) occurs. Yet, reduction to metallic indium was found to be the predominant process. Deposited indium could be stripped to indium(i). This unstable species disproportionated to indium(iii) and indium(0), leading to the formation of micron-sized metallic indium particles in the electrolyte. At 26 °C, indium deposited on glassy carbon as smooth, flat films whereas at 160 °C, it deposits as droplets.

13.
Phys Chem Chem Phys ; 20(4): 2444-2456, 2018 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-29313045

RESUMEN

Dynamic TGA studies of phosphonium ionic liquids have reported thermal stabilities of 300 °C or higher for these compounds. This is often an overestimation of the real thermal stability. The chosen technique as well as the experimental parameters can influence the thermal stability. In this paper, the thermal stability of commercially available Cyphos IL 101 is studied. The effect of the nature of the atmosphere (air or inert gas), the purity of the sample, the heating rate and presence of a metal on the short-term and long-term stability of commercial Cyphos IL 101 is investigated. The thermal decomposition products are characterized using thermogravimetric analysis coupled to mass spectrometry (TGA-MS). Impurities present and higher heating rates lead to an under- and overestimation of the thermal stability, respectively. The presence of oxygen leads to a lower thermal stability. In contrast, adding metal chlorides to the ionic liquid causes an increase in the thermal stability. The chloride anions are coordinated to the metal ion, so that the Lewis basicity of the anions is reduced. Also this paper gives insights in the behavior of Cyphos IL 101 at high temperatures, which is of relevance for possible application of this ionic liquid in high-temperature industrial processes.

14.
Chemistry ; 22(3): 1010-20, 2016 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-26643274

RESUMEN

New nickel-containing ionic liquids were synthesized, characterized and their electrochemistry was investigated. In addition, a mechanism for the electrochemical synthesis of nanoparticles from these compounds is proposed. In these so-called liquid metal salts, the nickel(II) cation is octahedrally coordinated by six N-alkylimidazole ligands. The different counter anions that were used are bis(trifluoromethanesulfonyl)imide (Tf2 N(-) ), trifluoromethanesulfonate (OTf(-) ) and methanesulfonate (OMs(-) ). Several different N-alkylimidazoles were considered, with the alkyl sidechain ranging in length from methyl to dodecyl. The newly synthesized liquid metal salts were characterized by CHN analysis, FTIR, DSC, TGA and viscosity measurements. An odd-even effect was observed for the melting temperatures and viscosities of the ionic liquids, with the complexes with an even number of carbon atoms in the alkyl chain of the imidazole having a higher melting temperature and a lower viscosity than the complexes with an odd number of carbons. The crystal structures of several of the nickel(II) complexes that are not liquid at room temperature were determined. The electrochemistry of the compounds with the lowest viscosities was investigated. The nickel(II) cation could be reduced but surprisingly no nickel deposits were obtained on the electrode. Instead, nickel nanoparticles were formed at 100 % selectivity, as confirmed by TEM. The magnetic properties of these nanoparticles were investigated by SQUID measurements.

15.
Chemistry ; 21(5): 2146-56, 2015 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-25430783

RESUMEN

The abundant sesquiterpene ß-caryophyllene can be epoxidized by molecular oxygen in the absence of any catalyst. In polar aprotic solvents, the reaction proceeds smoothly with epoxide selectivities exceeding 70 %. A mechanistic study has been performed and the possible involvement of free radical, spin inversion, and electron transfer mechanisms is evaluated using experimental and computational methods. The experimental data-including a detailed reaction product analysis, studies on reaction parameters, solvent effects, additives and an electrochemical investigation-all support that the spontaneous epoxidation of ß-caryophyllene constitutes a rare case of unsensitized electron transfer from an olefin to triplet oxygen under mild conditions (80 °C, 1 bar O2 ). As initiation of the oxygenation reaction, the formation of a caryophyllene-derived radical cation via electron transfer is proposed. This radical cation reacts with triplet oxygen to a dioxetane via a chain mechanism with chain lengths exceeding 100 under optimized conditions. The dioxetane then acts as an in situ-formed epoxidizing agent. Under nitrogen atmosphere, the presence of a one-electron acceptor leads to the selective isomerization of ß-caryophyllene to isocaryophyllene. Observations indicate that this isomerization reaction is a novel and elegant synthetic pathway to isocaryophyllene.


Asunto(s)
Sesquiterpenos/química , Catálisis , Electrones , Isomerismo , Estructura Molecular , Sesquiterpenos Policíclicos
16.
Chemistry ; 21(11): 4300-7, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25601611

RESUMEN

A conformationally flexible triazole-carboxylic acid ligand derived from an L-amino acid, namely, 4 H-1,2,4-triazol-4-yl-acetic acid (αHGlytrz), has been exploited to synthesize a structurally diverse and functionally intriguing metal-organic framework with CuSiF6. The crystal structure reveals a novel single-walled metal-organic nanotube (SWMONT), namely, {[Cu3(µ3-OH)(H2O)3(Glytrz)3]⋅SiF6⋅8 H2O⋅X}∞ (1), (where X = disordered lattice water molecules) having a pore size as large as zeolites. Compound 1 was synthesized as crystals, as powder, or as layers by precipitation/electrodeposition. Mercury intrusion porosimetry demonstrates the ability of this material to store metallic mercury, after a pressure treatment, contrary to previous literature examples.

17.
Phys Chem Chem Phys ; 17(19): 12575-86, 2015 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-25898788

RESUMEN

The oxygen reduction reaction and oxygen evolution reaction (ORR-OER) in DMSO were investigated by cyclic voltammetry and potentiostatic methods. A quartz crystal microbalance (QCM) was used to detect which products are formed during reduction and to evaluate the reversibility of the reactions. The studied parameters include the scan rate and the applied cathodic potential. We confirm by the QCM that LiO2 is soluble: this conclusion comes from the time delay we observed between the deposition of the expected mass (based on Faraday's law) and the measured mass. Ambiguity in reported literature values for the slope of the deposited mass per electron M/z is due to the negligence in considering this time delay. The average M/z value versus cathodic charge indicates that soluble LiO2 is the first product of the ORR which reacts further to form Li2O2, either via a disproportionation reaction or via further electrochemical reduction of LiO2. For strong negative potentials and thus large depths of discharge, Li2O is the main discharge product. The reaction pathways hence strongly depend on the experimental conditions applied; especially the reduction potential. The redox mediator tetrathiafulvalene (TTF) was investigated and its influence on reversibility was confirmed by cycling at moderate depths of discharge, where Li2O2 is the main discharge product.

18.
Phys Chem Chem Phys ; 17(18): 12080-9, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25875112

RESUMEN

The electrodeposition of germanium at elevated temperatures up to 180 °C and pressures was studied from the ionic liquids 1-butyl-1-methylpyrrolidinium dicyanamide and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide containing [GeCl4(BuIm)2] (where BuIm = 1-butylimidazole) or GeCl4. Cyclic voltammetry (CV), electrochemical quartz crystal microbalance (EQCM), rotating ring-disk electrode (RRDE), scanning electron microscope (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), electron backscatter diffraction (EBSD) and Auger electron spectroscopy (AES) were used to investigate the electrochemical behavior and the properties of the electrodeposited germanium. Electrodeposition at elevated temperatures leads to higher deposition rates due to: (1) increase in the diffusion rate of the electroactive germanium compounds; (2) faster electrochemical kinetics in the electrolyte; and (3) higher electrical conductivity of the electrodeposited germanium film. Moreover, the morphology of the germanium film is also of a better quality at higher electrodeposition temperatures due to an increase in adatom mobility.

19.
Beilstein J Org Chem ; 10: 2484-500, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25383120

RESUMEN

The near-unlimited availability of CO2 has stimulated a growing research effort in creating value-added products from this greenhouse gas. This paper presents the trends on the most important methods used in the electrochemical synthesis of carboxylic acids from carbon dioxide. An overview is given of different substrate groups which form carboxylic acids upon CO2 fixation, including mechanistic considerations. While most work focuses on the electrocarboxylation of substrates with sacrificial anodes, this review considers the possibilities and challenges of implementing other synthetic methodologies. In view of potential industrial application, the choice of reactor setup, electrode type and reaction pathway has a large influence on the sustainability and efficiency of the process.

20.
Sci Adv ; 10(29): eado7826, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39028805

RESUMEN

For wearable electronics, radial scalability is one of the key research areas for fibrous energy storage devices to be commercialized, but this field has been shelved for years due to the lack of effective methods and configuration arrangements. Here, the team presents a generalizable strategy to realize radial scalability by applying a synchronous-twisting method (STM) for synthesizing a coaxial-extensible configuration (CEC). As examples, aqueous fiber-shaped Zn-MnO2 batteries and MoS2-MnO2 supercapacitors with a diameter of ~500 µm and a length of 100 cm were made. Because of the radial scalability, uniform current distribution, and stable binding force in CEC, the devices not only have high energy densities (~316 Wh liter-1 for Zn-MnO2 batteries and ~107 Wh liter-1 for MoS2-MnO2 supercapacitors) but also maintain a stable operational state in textiles when external bending and tensile forces were applied. The fabricating method together with the radial scalability of the devices provides a reference for future fiber-shaped energy storage devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA