Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Biol ; 20(1): 52, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-35189878

RESUMEN

BACKGROUND: Long-term selection experiments are a powerful tool to understand the genetic background of complex traits. The longest of such experiments has been conducted in the Research Institute for Farm Animal Biology (FBN), generating extreme mouse lines with increased fertility, body mass, protein mass and endurance. For >140 generations, these lines have been maintained alongside an unselected control line, representing a valuable resource for understanding the genetic basis of polygenic traits. However, their history and genomes have not been reported in a comprehensive manner yet. Therefore, the aim of this study is to provide a summary of the breeding history and phenotypic traits of these lines along with their genomic characteristics. We further attempt to decipher the effects of the observed line-specific patterns of genetic variation on each of the selected traits. RESULTS: Over the course of >140 generations, selection on the control line has given rise to two extremely fertile lines (>20 pups per litter each), two giant growth lines (one lean, one obese) and one long-distance running line. Whole genome sequencing analysis on 25 animals per line revealed line-specific patterns of genetic variation among lines, as well as high levels of homozygosity within lines. This high degree of distinctiveness results from the combined effects of long-term continuous selection, genetic drift, population bottleneck and isolation. Detection of line-specific patterns of genetic differentiation and structural variation revealed multiple candidate genes behind the improvement of the selected traits. CONCLUSIONS: The genomes of the Dummerstorf trait-selected mouse lines display distinct patterns of genomic variation harbouring multiple trait-relevant genes. Low levels of within-line genetic diversity indicate that many of the beneficial alleles have arrived to fixation alongside with neutral alleles. This study represents the first step in deciphering the influence of selection and neutral evolutionary forces on the genomes of these extreme mouse lines and depicts the genetic complexity underlying polygenic traits.


Asunto(s)
Herencia Multifactorial , Polimorfismo de Nucleótido Simple , Alelos , Animales , Genómica , Ratones , Fenotipo , Selección Genética
2.
Mol Ecol ; 27(8): 1848-1859, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29113026

RESUMEN

Despite evidence from laboratory experiments that perturbation of the gut microbiota affects many traits of the animal host, our understanding of the effect of variation in microbiota composition on animals in natural populations is very limited. The core purpose of this study on the fruit fly Drosophila melanogaster was to identify the impact of natural variation in the taxonomic composition of gut bacterial communities on host traits, with the gut transcriptome as a molecular index of microbiota-responsive host traits. Use of the gut transcriptome was validated by demonstrating significant transcriptional differences between the guts of laboratory flies colonized with bacteria and maintained under axenic conditions. Wild Drosophila from six field collections made over two years had gut bacterial communities of diverse composition, dominated to varying extents by Acetobacteraceae and Enterobacteriaceae. The gut transcriptomes also varied among collections and differed markedly from those of laboratory flies. However, no overall relationship between variation in the wild fly transcriptome and taxonomic composition of the gut microbiota was evident at all taxonomic scales of bacteria tested for both individual fly genes and functional categories in Gene Ontology. We conclude that the interaction between microbiota composition and host functional traits may be confounded by uncontrolled variation in both ecological circumstance and host traits (e.g., genotype, age physiological condition) under natural conditions, and that microbiota effects on host traits identified in the laboratory should, therefore, be extrapolated to field population with great caution.


Asunto(s)
Drosophila melanogaster/genética , Microbioma Gastrointestinal/genética , Simbiosis/genética , Transcripción Genética , Acetobacteraceae/genética , Animales , Biodiversidad , Drosophila melanogaster/microbiología , Enterobacteriaceae/genética , Tracto Gastrointestinal/microbiología , ARN Ribosómico 16S/genética
3.
Mol Ecol ; 27(13): 2834-2845, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29802796

RESUMEN

Most of the evidence that the gut microbiome of animals is functionally variable, with consequences for the health and fitness of the animal host, is based on laboratory studies, often using inbred animals under tightly controlled conditions. It is largely unknown whether these microbiome effects would be evident in outbred animal populations under natural conditions. In this study, we quantified the functional traits of the gut microbiota (metagenome) and host (gut transcriptome) and the taxonomic composition of the gut microorganisms (16S rRNA gene sequence) in natural populations of three mycophagous Drosophila species. Variation in microbiome function and composition was driven principally by the period of sample collection, while host function varied mostly with Drosophila species, indicating that variation in microbiome traits is determined largely by environmental factors, and not host taxonomy. Despite this, significant correlations between microbiome and host functional traits were obtained. In particular, microbiome functions dominated by metabolism were positively associated with host functions relating to gut epithelial turnover. Much of the functional variation in the microbiome could be attributed to variation in abundance of Bacteroidetes, rather than the two other abundant groups, the γ-Proteobacteria or Lactobacillales. We conclude that functional variation in the interactions between animals and their gut microbiome can be detectable in natural populations, and, in mycophagous Drosophila, this variation relates primarily to metabolism and homeostasis of the gut epithelium.


Asunto(s)
Drosophila/genética , Microbioma Gastrointestinal/genética , Interacciones Microbiota-Huesped/genética , Transcriptoma/genética , Animales , Biodiversidad , Drosophila/microbiología , Gammaproteobacteria/genética , Metagenoma/genética , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética
5.
Appl Environ Microbiol ; 81(18): 6232-40, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26150460

RESUMEN

Most associations between animals and their gut microbiota are dynamic, involving sustained transfer of food-associated microbial cells into the gut and shedding of microorganisms into the external environment with feces, but the interacting effects of host and microbial factors on the composition of the internal and external microbial communities are poorly understood. This study on laboratory cultures of the fruit fly Drosophila melanogaster reared in continuous contact with their food revealed time-dependent changes of the microbial communities in the food that were strongly influenced by the presence and abundance of Drosophila. When germfree Drosophila eggs were aseptically added to nonsterile food, the microbiota in the food and flies converged to a composition dramatically different from that in fly-free food, showing that Drosophila has microbiota-independent effects on the food microbiota. The microbiota in both the flies that developed from unmanipulated eggs (bearing microorganisms) and the associated food was dominated by the bacteria most abundant on the eggs, demonstrating effective vertical transmission via surface contamination of eggs. Food coinoculated with a four-species defined bacterial community of Acetobacter and Lactobacillus species revealed the progressive elimination of Lactobacillus from the food bearing few or no Drosophila, indicating the presence of antagonistic interactions between Acetobacter and Lactobacillus. Drosophila at high densities ameliorated the Acetobacter/Lactobacillus antagonism, enabling Lactobacillus to persist. This study with Drosophila demonstrates how animals can have major, coordinated effects on the composition of microbial communities in the gut and immediate environment.


Asunto(s)
Biota , Drosophila melanogaster/microbiología , Microbiología Ambiental , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Microbiología de Alimentos , Tracto Gastrointestinal/microbiología , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
6.
G3 (Bethesda) ; 14(3)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38069680

RESUMEN

The neritid snail Theodoxus fluviatilis is found across habitats differing in salinity, from shallow waters along the coast of the Baltic Sea to lakes throughout Europe. Living close to the water surface makes this species vulnerable to changes in salinity in their natural habitat, and the lack of a free-swimming larval stage limits this species' dispersal. Together, these factors have resulted in a patchy distribution of quite isolated populations differing in their salinity tolerances. In preparation for investigating the mechanisms underlying the physiological differences in osmoregulation between populations that cannot be explained solely by phenotypic plasticity, we present here an annotated draft genome assembly for T. fluviatilis, generated using PacBio long reads, Illumina short reads, and transcriptomic data. While the total assembly size (1045 kb) is similar to those of related species, it remains highly fragmented (N scaffolds = 35,695; N50 = 74 kb) though moderately high in complete gene content (BUSCO single copy complete: 74.3%, duplicate: 2.6%, fragmented: 10.6%, missing: 12.5% using metazoa n = 954). Nevertheless, we were able to generate gene annotations of 21,220 protein-coding genes (BUSCO single copy complete: 65.1%, duplicate: 16.7%, fragmented: 9.1%, missing: 9.1% using metazoa n = 954). Not only will this genome facilitate comparative evolutionary studies across Gastropoda, as this is the first genome assembly for the basal snail family Neritidae, it will also greatly facilitate the study of salinity tolerance in this species. Additionally, we discuss the challenges of working with a species where high molecular weight DNA isolation is very difficult.


Asunto(s)
Genoma , Caracoles , Animales , Caracoles/genética , Europa (Continente) , Anotación de Secuencia Molecular , Perfilación de la Expresión Génica
7.
Sci Rep ; 12(1): 1307, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35079031

RESUMEN

Upon injury, the homeostatic balance that ensures tissue function is disrupted. Wound-induced signaling triggers the recovery of tissue integrity and offers a context to understand the molecular mechanisms for restoring tissue homeostasis upon disturbances. Marine sessile animals are particularly vulnerable to chronic wounds caused by grazers that can compromise prey's health. Yet, in comparison to other stressors like warming or acidification, we know little on how marine animals respond to grazing. Marine sponges (Phylum Porifera) are among the earliest-diverging animals and play key roles in the ecosystem; but they remain largely understudied. Here, we investigated the transcriptomic responses to injury caused by a specialist spongivorous opisthobranch (i.e., grazing treatment) or by clipping with a scalpel (i.e., mechanical damage treatment), in comparison to control sponges. We collected samples 3 h, 1 d, and 6 d post-treatment for differential gene expression analysis on RNA-seq data. Both grazing and mechanical damage activated a similar transcriptomic response, including a clotting-like cascade (e.g., with genes annotated as transglutaminases, metalloproteases, and integrins), calcium signaling, and Wnt and mitogen-activated protein kinase signaling pathways. Wound-induced gene expression signature in sponges resembles the initial steps of whole-body regeneration in other animals. Also, the set of genes responding to wounding in sponges included putative orthologs of cancer-related human genes. Further insights can be gained from taking sponge wound healing as an experimental system to understand how ancient genes and regulatory networks determine healthy animal tissues.


Asunto(s)
Neoplasias/genética , Poríferos/genética , Transducción de Señal/genética , Transcriptoma/genética , Cicatrización de Heridas/genética , Animales , Regulación hacia Abajo/genética , Ecosistema , Redes Reguladoras de Genes , Humanos , Modelos Animales , Filogenia , Poríferos/clasificación , Mapas de Interacción de Proteínas/genética , RNA-Seq/métodos , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA