Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 552(7683): 116-120, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29186113

RESUMEN

Molecular alterations in genes involved in DNA mismatch repair (MMR) promote cancer initiation and foster tumour progression. Cancers deficient in MMR frequently show favourable prognosis and indolent progression. The functional basis of the clinical outcome of patients with tumours that are deficient in MMR is not clear. Here we genetically inactivate MutL homologue 1 (MLH1) in colorectal, breast and pancreatic mouse cancer cells. The growth of MMR-deficient cells was comparable to their proficient counterparts in vitro and on transplantation in immunocompromised mice. By contrast, MMR-deficient cancer cells grew poorly when transplanted in syngeneic mice. The inactivation of MMR increased the mutational burden and led to dynamic mutational profiles, which resulted in the persistent renewal of neoantigens in vitro and in vivo, whereas MMR-proficient cells exhibited stable mutational load and neoantigen profiles over time. Immune surveillance improved when cancer cells, in which MLH1 had been inactivated, accumulated neoantigens for several generations. When restricted to a clonal population, the dynamic generation of neoantigens driven by MMR further increased immune surveillance. Inactivation of MMR, driven by acquired resistance to the clinical agent temozolomide, increased mutational load, promoted continuous renewal of neoantigens in human colorectal cancers and triggered immune surveillance in mouse models. These results suggest that targeting DNA repair processes can increase the burden of neoantigens in tumour cells; this has the potential to be exploited in therapeutic approaches.


Asunto(s)
Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Reparación de la Incompatibilidad de ADN/genética , Inmunoterapia/métodos , Neoplasias/inmunología , Neoplasias/patología , Animales , Anticuerpos Antineoplásicos/inmunología , Anticuerpos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/genética , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Homólogo 1 de la Proteína MutL/deficiencia , Homólogo 1 de la Proteína MutL/genética , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/inmunología , Escape del Tumor/genética , Escape del Tumor/inmunología
2.
Molecules ; 28(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38138547

RESUMEN

We describe the development and validation of an HPLC-MS/MS method to assess the pharmacokinetics and tumour distribution of ZST316, an arginine analogue with inhibitory activity towards dimethylarginine dimethylaminohydrolase 1 (DDAH1) and vasculogenic mimicry, and its active metabolite L-257 in a xenograft model of triple-negative breast cancer (TNBC). The method proved to be reproducible, precise, and highly accurate for the measurement of both compounds in plasma and tumour tissue following acute and chronic (five days) intraperitoneal administration of ZST316 (30 mg/Kg daily) in six-week-old severe combined immunodeficiency disease (SCID) mice inoculated with MDA-MB-231 TNBC cells. ZST316 was detected in tumour tissue and plasma after 1 h (6.47 and 9.01 µM, respectively) and 24 h (0.13 and 0.16 µM, respectively) following acute administration, without accumulation during chronic treatment. Similarly, the metabolite L-257 was found in tumour tissue and plasma after 1 h (15.06 and 8.72 µM, respectively) and 24 h (0.17 and 0.17 µM, respectively) following acute administration of ZST316, without accumulation during chronic treatment. The half-life after acute and chronic treatment ranged between 4.4-7.1 h (plasma) and 4.5-5.0 h (tumour) for ZST316, and 4.2-5.3 h (plasma) and 3.6-4.9 h (tumour) for L-257. The results of our study demonstrate the (a) capacity to accurately measure ZST316 and L-257 concentrations in plasma and tumour tissue in mice using the newly developed HPLC-MS/MS method, (b) rapid conversion of ZST316 into L-257, (c) good intra-tumour penetration of both compounds, and (d) lack of accumulation of both ZST316 and L-257 in plasma and tumour tissue during chronic administration. Compared to a previous method developed by our group to investigate ZST316 in plasma, the main advantages of the new method include a wider range of linearity which reduces the need for dilutions and the combined assessment of ZST316 and L-257 in plasma and tumour tissue which limits the required amount of matrix. The new HPLC-MS/MS method is useful to investigate the in vivo effects of ZST316 and L-257 on vasculogenic mimicry, tumour mass, and metastatic burden in xenograft models of TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Ratones , Animales , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Espectrometría de Masas en Tándem , Xenoinjertos , Cromatografía Líquida con Espectrometría de Masas
3.
Eur J Immunol ; 51(11): 2677-2686, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34570376

RESUMEN

A considerable proportion of cancer patients are resistant or only partially responsive to immune checkpoint blockade immunotherapy. Tumor-Associated Macrophages (TAMs) infiltrating the tumor stroma suppress the adaptive immune responses and, hence, promote tumor immune evasion. Depletion of TAMs or modulation of their protumoral functions is actively pursued, with the purpose of relieving this state of immunesuppression. We previously reported that trabectedin, a registered antitumor compound, selectively reduces monocytes and TAMs in treated tumors. However, its putative effects on the adaptive immunity are still unclear. In this study, we investigated whether treatment of tumor-bearing mice with trabectedin modulates the presence and functional activity of T-lymphocytes. In treated tumors, there was a significant upregulation of T cell-associated genes, including CD3, CD8, perforin, granzyme B, and IFN-responsive genes (MX1, CXCL10, and PD-1), indicating that T lymphocytes were activated after treatment. Notably, the mRNA levels of the Pdcd1 gene, coding for PD-1, were strongly increased. Using a fibrosarcoma model poorly responsive to PD-1-immunotherapy, treatment with trabectedin prior to anti-PD-1 resulted in improved antitumor efficacy. In conclusion, pretreatment with trabectedin enhances the therapeutic response to checkpoint inhibitor-based immunotherapy. These findings provide a good rational for the combination of trabectedin with immunotherapy regimens.


Asunto(s)
Inmunidad Adaptativa/efectos de los fármacos , Antineoplásicos Alquilantes/farmacología , Neoplasias Experimentales/inmunología , Trabectedina/farmacología , Macrófagos Asociados a Tumores/efectos de los fármacos , Animales , Fibrosarcoma/inmunología , Inhibidores de Puntos de Control Inmunológico/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Escape del Tumor/efectos de los fármacos , Escape del Tumor/inmunología , Macrófagos Asociados a Tumores/inmunología
4.
Genomics ; 113(5): 3439-3448, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34339817

RESUMEN

Myxoid liposarcoma (MLPS) is a rare soft-tissue sarcoma characterised by the expression of FUS-DDIT3 chimera. Trabectedin has shown significant clinical anti-tumour activity against MLPS. To characterise the molecular mechanism of trabectedin sensitivity and of resistance against it, we integrated genomic and transcriptomic data from treated mice bearing ML017 or ML017/ET, two patient-derived MLPS xenograft models, sensitive to and resistant against trabectedin, respectively. Longitudinal RNA-Seq analysis of ML017 showed that trabectedin acts mainly as a transcriptional regulator: 15 days after the third dose trabectedin modulates the transcription of 4883 genes involved in processes that sustain adipocyte differentiation. No such differences were observed in ML017/ET. Genomic analysis showed that prolonged treatment causes losses in 4p15.2, 4p16.3 and 17q21.3 cytobands leading to acquired-resistance against the drug. The results dissect the complex mechanism of action of trabectedin and provide the basis for novel combinatorial approaches for the treatment of MLPS that could overcome drug-resistance.


Asunto(s)
Liposarcoma Mixoide , Adulto , Animales , Modelos Animales de Enfermedad , Humanos , Liposarcoma Mixoide/tratamiento farmacológico , Liposarcoma Mixoide/genética , Liposarcoma Mixoide/patología , Ratones , Trabectedina/uso terapéutico
5.
Molecules ; 27(3)2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35164277

RESUMEN

The pharmacokinetic profile of ZST316 and ZST152, arginine analogues with inhibitory activity towards human dimethylarginine dimethylaminohydrolase-1 (DDAH1), was investigated in mice using a newly developed HPLC-MS/MS method. The method proved to be reproducible, precise, and accurate for the measurement of the compounds in plasma and urine. Four-week-old female FVB mice received a single dose of ZST316 and ZST152 by intravenous bolus (30 mg/Kg) and oral gavage (60 mg/Kg). ZST316 Cmax was 67.4 µg/mL (intravenous) and 1.02 µg/mL (oral), with a half-life of 6 h and bioavailability of 4.7%. ZST152 Cmax was 24.9 µg/mL (intravenous) and 1.65 µg/mL (oral), with a half-life of 1.2 h and bioavailability of 33.3%. Urinary excretion of ZST152 and ZST316 was 12.5%-22.2% and 2.3%-7.5%, respectively. At least eight urinary metabolites were identified. After chronic intraperitoneal treatment with the more potent DDAH1 inhibitor, ZST316 (30 mg/Kg/day for three weeks), the bioavailability was 59% and no accumulation was observed. Treatment was well tolerated with no changes in body weight vs. untreated animals and no clinical signs of toxicity or distress. The results of this study show that ZST316 has a favorable pharmacokinetic profile, following intraperitoneal administration, to investigate the effects of DDAH1 inhibition in mice.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacocinética , Animales , Arginina/administración & dosificación , Arginina/análogos & derivados , Arginina/farmacocinética , Disponibilidad Biológica , Cromatografía Líquida de Alta Presión , Inhibidores Enzimáticos/administración & dosificación , Inhibidores Enzimáticos/química , Femenino , Humanos , Ratones , Espectrometría de Masas en Tándem
7.
Br J Cancer ; 121(6): 464-473, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31409911

RESUMEN

BACKGROUND: Myxoid liposarcoma is a histological subtype of liposarcoma particularly sensitive to trabectedin. In clinical use this drug does not cause cumulative toxicity, allowing prolonged treatment, generally until disease progression. No other effective therapies are available for trabectedin-resistant patients. METHODS: Through repeated in vivo treatment in athymic nude mice, we have obtained a patient-derived xenograft with acquired resistance to trabectedin. RESULTS: At basal level, the morphology of the resistant and sensitive models did not differ, in keeping with the finding that the transcriptional profiles of the resistant and sensitive tumours were very similar. After trabectedin treatment adipogenesis was induced in the parental xenograft but not in the resistant one, as assessed by pathological and molecular analysis. A defective transcription-coupled-nucleotide excision repair in the resistant tumour due to mutation of the UVSSA gene may be implicated in the mechanism of resistance. CONCLUSIONS: This is the first in vivo model of myxoid liposarcoma with acquired resistance to trabectedin. Although further studies are necessary to characterise the resistance mechanisms, this is a useful tool for studying new therapeutic strategies to overcome trabectedin resistance in patients.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Proteínas Portadoras/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Liposarcoma Mixoide/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Apoptosis , Carbolinas/administración & dosificación , Proliferación Celular , Doxorrubicina/administración & dosificación , Resistencia a Antineoplásicos/genética , Femenino , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Compuestos Heterocíclicos de 4 o más Anillos/administración & dosificación , Humanos , Liposarcoma Mixoide/genética , Liposarcoma Mixoide/patología , Ratones , Ratones Desnudos , Trabectedina/administración & dosificación , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Int J Cancer ; 140(1): 197-207, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27594045

RESUMEN

It has recently been reported that a large proportion of human malignant pleural mesothelioma (MPM) cell lines and patient tissue samples present high expression of the c-MYC oncogene. This gene drives several tumorigenic processes and is overexpressed in many cancers. Although c-MYC is a strategic target to restrain cancer processes, no drugs acting as c-MYC inhibitors are available. The novel thienotriazolodiazepine small-molecule bromodomain inhibitor OTX015/MK-8628 has shown potent antiproliferative activity accompanied by c-MYC downregulation in several tumor types. This study was designed to evaluate the growth inhibitory effect of OTX015 on patient-derived MPM473, MPM487 and MPM60 mesothelioma cell lines and its antitumor activity in three patient-derived xenograft models, MPM473, MPM487 and MPM484, comparing it with cisplatin, gemcitabine and pemetrexed, three agents which are currently used to treat MPM in the clinic. OTX015 caused a significant delay in cell growth both in vitro and in vivo. It was the most effective drug in MPM473 xenografts and showed a similar level of activity as the most efficient treatment in the other two MPM models (gemcitabine in MPM487 and cisplatin in MPM484). In vitro studies showed that OTX015 downregulated c-MYC protein levels in both MPM473 and MPM487 cell lines. Our findings represent the first evidence of promising therapeutic activity of OTX015 in mesothelioma.


Asunto(s)
Acetanilidas/administración & dosificación , Cisplatino/administración & dosificación , Desoxicitidina/análogos & derivados , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Neoplasias Pulmonares/tratamiento farmacológico , Mesotelioma/tratamiento farmacológico , Pemetrexed/administración & dosificación , Proteínas Proto-Oncogénicas c-myc/metabolismo , Acetanilidas/farmacología , Anciano , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cisplatino/farmacología , Desoxicitidina/administración & dosificación , Desoxicitidina/farmacología , Regulación hacia Abajo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Mesotelioma/metabolismo , Mesotelioma Maligno , Ratones , Persona de Mediana Edad , Pemetrexed/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
10.
Br J Cancer ; 117(5): 628-638, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28683469

RESUMEN

BACKGROUND: Lurbinectedin is a novel anticancer agent currently undergoing late-stage (Phase II /III) clinical evaluation in platinum-resistant ovarian, BRCA1/2-mutated breast and small-cell lung cancer. Lurbinectedin is structurally related to trabectedin and it inhibits active transcription and the DNA repair machinery in tumour cells. METHODS: In this study we investigated whether lurbinectedin has the ability to modulate the inflammatory microenvironment and the viability of myeloid cells in tumour-bearing mice. RESULTS: Administration of lurbinectedin significantly and selectively decreased the number of circulating monocytes and, in tumour tissues, that of macrophages and vessels. Similar findings were observed when a lurbinectedin-resistant tumour variant was used, indicating a direct effect of lurbinectedin on the tumour microenviroment. In vitro, lurbinectedin induced caspase-8-dependent apoptosis of human purified monocytes, whereas at low doses it significantly inhibited the production of inflammatory/growth factors (CCL2, CXCL8 and VEGF) and dramatically impaired monocyte adhesion and migration ability. These findings were supported by the strong inhibition of genes of the Rho-GTPase family in lurbinectedin-treated monocytes. CONCLUSIONS: The results illustrate that lurbinectedin affects at multiple levels the inflammatory microenvironment by acting on the viability and functional activity of mononuclear phagocytes. These peculiar effects, combined with its intrinsic activity against cancer cells, make lurbinectedin a compound of particular interest in oncology.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Carbolinas/farmacología , Fibrosarcoma/tratamiento farmacológico , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Macrófagos , Monocitos/efectos de los fármacos , Monocitos/fisiología , Neoplasias Ováricas/tratamiento farmacológico , Microambiente Tumoral/efectos de los fármacos , Animales , Antineoplásicos Alquilantes/uso terapéutico , Apoptosis/efectos de los fármacos , Carbolinas/uso terapéutico , Caspasa 8/metabolismo , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Quimiocina CCL2/biosíntesis , Dioxoles/farmacología , Regulación hacia Abajo , Femenino , Fibrosarcoma/inmunología , Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Células HL-60 , Compuestos Heterocíclicos de 4 o más Anillos/uso terapéutico , Humanos , Interleucina-8/biosíntesis , Recuento de Leucocitos , Ratones , Ratones Endogámicos C57BL , Monocitos/metabolismo , Neovascularización Patológica/prevención & control , Tetrahidroisoquinolinas/farmacología , Trabectedina , Microambiente Tumoral/inmunología , Células U937 , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas de Unión al GTP rho/genética
11.
Cell Mol Life Sci ; 73(13): 2411-24, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26956893

RESUMEN

Myeloid cells infiltrating the tumor microenvironment, especially tumor-associated macrophages (TAMs), are essential providers of cancer-related inflammation, a condition known to accelerate tumor progression and limit the response to anti-tumor therapies. As a matter of fact, TAMs may have a dual role while interfering with cancer treatments, as they can either promote or impair their functionality. Here we review the connection between macrophages and anticancer therapies; moreover, we provide an overview of the different strategies to target or re-program TAMs for therapeutic purposes.


Asunto(s)
Inflamación/complicaciones , Macrófagos/patología , Neoplasias/complicaciones , Neoplasias/terapia , Animales , Técnicas de Reprogramación Celular/métodos , Humanos , Inmunoterapia/métodos , Inflamación/inmunología , Inflamación/patología , Inflamación/terapia , Macrófagos/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neovascularización Patológica/complicaciones , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Neovascularización Patológica/terapia , Microambiente Tumoral
12.
Mol Pharm ; 13(1): 40-6, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26623665

RESUMEN

Polymer nanoparticles (NPs) represent a promising way to deliver poorly water-soluble anticancer drugs without the use of unwanted excipients, whose presence can be the cause of severe side effects. In this work, a Cremophor-free formulation for paclitaxel (PTX) has been developed by employing PEGylated polymer nanoparticles (NPs) as drug delivery carriers based on modified poly(ε-caprolactone) macromonomers and synthesized through free radical emulsion polymerization. Paclitaxel was loaded in the NPs in a postsynthesis process which allowed to obtain a drug concentration suitable for in vivo use. In vivo experiments on drug biodistribution and therapeutic efficacy show comparable behavior between the NPs and the Cremophor formulation, also showing good tolerability of the new formulation proposed.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Paclitaxel/química , Polietilenglicoles/química , Polímeros/química , Polimerizacion
13.
Int J Cancer ; 136(3): 721-9, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24917554

RESUMEN

Trabectedin is a marine natural product, approved in Europe for the treatment of soft tissue sarcoma and relapsed ovarian cancer. Clinical and experimental evidence indicates that trabectedin is particularly effective against myxoid liposarcomas where response is associated to regression of capillary networks. Here, we investigated the mechanism of the antiangiogenic activity of trabectedin in myxoid liposarcomas. Trabectedin directly targeted endothelial cells, impairing functions relying on extracellular matrix remodeling (invasion and branching morphogenesis) through the upregulation of the inhibitors of matrix metalloproteinases TIMP-1 and TIMP-2. Increased TIMPs synthesis by the tumor microenvironment following trabectedin treatment was confirmed in xenograft models of myxoid liposarcoma. In addition, trabectedin upregulated tumor cell expression of the endogenous inhibitor thrombospondin-1 (TSP-1, a key regulator of angiogenesis-dependent dormancy in sarcoma), in in vivo models of myxoid liposarcomas, in vitro cell lines and primary cell cultures from patients' myxoid liposarcomas. Chromatin Immunoprecipitation analysis showed that trabectedin displaced the master regulator of adipogenesis C/EBPß from the TSP-1 promoter, indicating an association between the up-regulation of TSP-1 and induction of adipocytic differentiation program by trabectedin. We conclude that trabectedin inhibits angiogenesis through multiple mechanisms, including directly affecting endothelial cells in the tumor microenvironment--with a potentially widespread activity--and targeting tumor cells' angiogenic activity, linked to a tumor-specific molecular alteration.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Dioxoles/farmacología , Liposarcoma Mixoide/tratamiento farmacológico , Tetrahidroisoquinolinas/farmacología , Trombospondina 1/fisiología , Inhibidor Tisular de Metaloproteinasa-1/fisiología , Inhibidor Tisular de Metaloproteinasa-2/fisiología , Animales , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Células Endoteliales/fisiología , Femenino , Humanos , Liposarcoma Mixoide/irrigación sanguínea , Ratones , Ratones Endogámicos C57BL , Trabectedina
14.
Connect Tissue Res ; 56(5): 355-63, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25943461

RESUMEN

PURPOSE: Thrombospondin-1 (TSP-1), a major regulator of cell interaction with the environment, is often deregulated in cancers, including ovarian carcinoma. Both the tumor and the host cells can release TSP-1 in the tumor microenvironment. The relative contribution of the two sources in determining TSP-1 levels in ovarian cancer remains to be elucidated. This study was designed to investigate the expression of tumor TSP-1 in a panel of 29 patient-derived ovarian adenocarcinoma xenografts (PDX), using analytical tools specific for human (tumor-derived) rather than murine (host-derived) TSP-1. METHODOLOGY: Human-specific microarray and ELISA were used to measure tumor TSP-1 expression and plasma levels. RESULTS: Tumor-derived TSP-1 was heterogeneously expressed in PDX. Expression was higher in the corresponding original patient's tumor, where stroma-derived TSP-1 is also analyzed, indicating that both the tumor and the host contribute to TSP-1 production. TSP-1 was differentially expressed according to tumor grade, but not affected by p53 expression or mutational status. Findings were confirmed in an external gene expression dataset (101 patients). In a functional enrichment analysis, TSP-1 correlated with genes related to angiogenesis, cell motility, communication and shape. Plasma TSP-1, detectable in 10/11 PDX, was not associated to its expression in the tumor. The possible association of plasma TSP-1 with p53 mutations and response to chemotherapy warrants further investigation. CONCLUSIONS: Ovarian carcinoma PDX are a useful tool to investigate the relative contribution of stroma and tumor cells in the production of tumor associated factors, in relation to the tumor behavior, molecular properties and response to therapy.


Asunto(s)
Estudio de Asociación del Genoma Completo , Neovascularización Patológica/patología , Neoplasias Ováricas/patología , Trombospondina 1/metabolismo , Microambiente Tumoral/fisiología , Animales , Femenino , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas/métodos , Estudio de Asociación del Genoma Completo/métodos , Xenoinjertos , Ratones , Neoplasias Ováricas/genética , Trombospondina 1/genética
15.
Pharmaceutics ; 16(3)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38543281

RESUMEN

We describe the development and validation of a HPLC-MS/MS method to assess the pharmacokinetics and tumor distribution of fenretinide, a synthetic retinoid chemically related to all-trans-retinoic acid, after administration of a novel oral nanoformulation of fenretinide, called bionanofenretinide (BNF). BNF was developed to overcome the major limitation of fenretinide: its poor aqueous solubility and bioavailability due to its hydrophobic nature. The method proved to be reproducible, precise and highly accurate for the measurement of the drug and the main metabolites. The lower limit of quantification resulted in 1 ng/mL. The curve range of 1-500 ng/mL and 50-2000 ng/mL, for plasma and tumor homogenate, respectively, was appropriate for the analysis, as demonstrated by the accuracy of between 96.8% and 102.4% for plasma and 96.6 to 102.3% for the tumor. The interdays precision and accuracy determined on quality controls at three different levels were in the ranges of 6.9 to 7.5% and 99.3 to 101.0%, and 0.96 to 1.91% and 102.3 to 105.8% for plasma and tumor, respectively. With the application of the novel assay in explorative pharmacokinetic studies, following acute and chronic oral administration of the nanoformulation, fenretinide was detected in plasma and tumor tissue at a concentration higher than the IC50 value necessary for in vitro inhibitory activity (i.e., 1-5 µM) in different cancer cells lines. We were also able to detect the presence in plasma and tumor of active and inactive metabolites of fenretinide.

16.
Int J Cancer ; 133(9): 2024-33, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23588839

RESUMEN

This study: (i) investigated the in vitro cytotoxicity and mode of action of lurbinectedin (PM01183) and Zalypsis® (PM00104) compared with trabectedin in cell lines deficient in specific mechanisms of repair, (ii) evaluated their in vivo antitumor activity against a series of murine tumors and human xenografts. The antiproliferative activity, the DNA damage and the cell cycle perturbations induced by the three compounds on tumor lines were very similar. Nucleotide Excision Repair (NER) deficient cells were approximately fourfold more resistant to trabectedin, lurbinectedin and Zalypsis®. Cells deficient in non-homologous end joining (NHEJ), MRN complex and translesion synthesis (TLS) were slightly more sensitive to the three compounds (approximately fivefold) while cells deficient in homologous recombination (HR) were markedly more sensitive (150-200-fold). All three compounds showed a good antitumor activity in several in vivo models. Lurbinectedin and trabectedin had a similar pattern of antitumor activity in murine tumors and in xenografts, whereas Zalypsis® appeared to have a distinct spectrum of activity. The fact that no relationship whatsoever was found between the in vitro cytotoxic potency and the in vivo antitumor activity, suggests that in addition to direct cytotoxic mechanisms other host-mediated effects are involved in the in vivo pharmacological effects.


Asunto(s)
Carbolinas/farmacología , Daño del ADN/efectos de los fármacos , Reparación del ADN/efectos de los fármacos , Dioxoles/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Neoplasias/tratamiento farmacológico , Tetrahidroisoquinolinas/farmacología , Alcaloides/farmacología , Animales , Antineoplásicos Alquilantes/farmacología , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Pollos , Citometría de Flujo , Humanos , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Estructura Molecular , Neoplasias/patología , Trabectedina , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Adv Healthc Mater ; 12(17): e2202932, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36908188

RESUMEN

Platinum-based chemotherapy is the first-line treatment for different cancer types, and in particular, for malignant pleural mesothelioma patients (a tumor histotype with urgent medical needs). Herein, a strategy is presented to stabilize, transport, and intracellularly release a platinumIV (PtIV ) prodrug using a breakable nanocarrier. Its reduction, and therefore activation as an anticancer drug, is promoted by the presence of glutathione in neoplastic cells that also causes the destruction of the carrier. The nanocage presents a single internal cavity in which the hydrophobic complex (Pt(dach)Cl2 (OH)2 ), (dach = R,R-diaminocyclohexane) is encapsulated. The in vitro uptake and the internalization kinetics in cancer model cells are evaluated and, using flow cytometry analysis, the successful release and activation of the Pt-based drug inside cancer cells are demonstrated. The in vitro findings are confirmed by the in vivo experiments on a mice model obtained by xenografting MPM487, a patient-derived malignant pleural mesothelioma. MPM487 confirms the well-known resistance of malignant pleural mesothelioma to cisplatin treatment while an interesting 50% reduction of tumor growth is observed when mice are treated with the PtIV , entrapped in the nanocages, at an equivalent dose of the platinum complex.


Asunto(s)
Antineoplásicos , Mesotelioma Maligno , Neoplasias , Animales , Ratones , Compuestos Organoplatinos/química , Antineoplásicos/farmacología , Antineoplásicos/química
18.
Oncoimmunology ; 12(1): 2239035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37538353

RESUMEN

Chemotherapy is the standard of care for most malignancies. Its tumor debulking effect in adjuvant or neoadjuvant settings is unquestionable, although secondary effects have been reported that paradoxically promote metastasis. Chemotherapy affects the hematopoietic precursors leading to myelosuppression, with neutropenia being the main hematological toxicity induced by cytotoxic therapy. We used renal and lung murine tumor models metastatic to the lung to study chemotherapy-induced neutropenia (CIN) in the metastatic process. Cyclophosphamide and doxorubicin, two myelosuppressive drugs, but not cisplatin, increased the burden of artificial metastases to the lung, by reducing neutrophils. This effect was recapitulated by treatment with anti-Ly6G, the selective antibody-mediated neutrophil depletion that unleashed the formation of lung metastases in both artificial and spontaneous metastasis settings. The increased cancer dissemination was reversed by granulocyte-colony stimulating factor-mediated boosting of neutrophils in combination with chemotherapy. CIN affected the early metastatic colonization of the lung, quite likely promoting the proliferation of tumor cells extravasated into the lung at 24-72 hours. CIN did not affect the late events of the metastatic process, with established metastasis to the lung, nor was there any effect on the release of cancer cells from the primary, whose growth was, in fact, somewhat inhibited. This work suggests a role of neutrophils associated to a common cancer treatment side effect and claims a deep dive into the relationship between chemotherapy-induced neutropenia and metastasis.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Neutropenia , Ratones , Animales , Neutropenia/inducido químicamente , Neutropenia/tratamiento farmacológico , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Antineoplásicos/efectos adversos , Proliferación Celular
19.
Front Oncol ; 12: 851790, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35299737

RESUMEN

Immune cells in the tumor micro-environment (TME) establish a complex relationship with cancer cells and may strongly influence disease progression and response to therapy. It is well established that myeloid cells infiltrating tumor tissues favor cancer progression. Tumor-Associated Macrophages (TAMs) are abundantly present at the TME and actively promote cancer cell proliferation and distant spreading, as well as contribute to an immune-suppressive milieu. Active research of the last decade has provided novel therapeutic approaches aimed at depleting TAMs and/or at reprogramming their functional activities. We reported some years ago that the registered anti-tumor agent trabectedin and its analogue lurbinectedin have numerous mechanisms of action that also involve direct effects on immune cells, opening up new interesting points of view. Trabectedin and lurbinectedin share the unique feature of being able to simultaneously kill cancer cells and to affect several features of the TME, most notably by inducing the rapid and selective apoptosis of monocytes and macrophages, and by inhibiting the transcription of several inflammatory mediators. Furthermore, depletion of TAMs alleviates the immunosuppressive milieu and rescues T cell functional activities, thus enhancing the anti-tumor response to immunotherapy with checkpoint inhibitors. In view of the growing interest in tumor-infiltrating immune cells, the availability of antineoplastic compounds showing immunomodulatory effects on innate and adaptive immunity deserves particular attention in the oncology field.

20.
Talanta ; 237: 122918, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34736656

RESUMEN

Pioglitazone is a Peroxisome Proliferator-Activated Receptor (PPAR) agonist of the thiazolidinedione class of compounds with promising anticancer activity. An innovative quantitative mass spectrometry imaging (MSI) method and a HPLC-UV method were developed and validated to investigate its distribution in tumor and liver tissues. The MSI method is based on stable isotope normalization and resulted highly specific and sensitive (0.2 pmol/spot). The correct identification of the drug ion signal is confirmed by MS/MS analysis on tissue. The method shows an optimal lateral resolution (25 µm) relying on the ionization efficiency and fine laser diameter of the atmospheric pressure MALDI source. The HPLC-UV method is simple and straightforward involving quick protein precipitation and shows good sensitivity (50ng/sample) using a small starting volume of biological sample. Thus, it is applicable to samples obtained from both preclinical models and clinical surgical procedures. MSI and HPLC-UV assays were validated assessing linearity, intra- and inter-day precision and accuracy, limit of quantification, selectivity and recovery. These are the first methods developed and validated for the analysis of pioglitazone in tissues, and they were applied successfully to myxoid liposarcoma xenograft-bearing mice, which received clinically relevant drug doses. Pioglitazone was measured by either method in sections of tumor and liver 2, 6 and 24 h post-treatment. Drug distribution was relatively homogeneous.


Asunto(s)
Presión Atmosférica , Espectrometría de Masas en Tándem , Animales , Cromatografía Líquida de Alta Presión , Ratones , Pioglitazona , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA