Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Plant Microbe Interact ; 33(3): 509-518, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31829102

RESUMEN

The type III secretion system (T3SS) of plant-pathogenic Pseudomonas syringae is essential for virulence. Genes encoding the T3SS are not constitutively expressed and must be induced upon infection. Plant-derived metabolites, including sugars such as fructose and sucrose, are inducers of T3SS-encoding genes, yet the molecular mechanisms underlying perception of these host signals by P. syringae are unknown. Here, we report that sugar-induced expression of type III secretion A (setA), predicted to encode a DeoR-type transcription factor, is required for maximal sugar-induced expression of T3SS-associated genes in P. syringae DC3000. From a Tn5 transposon mutagenesis screen, we identified two independent mutants with insertions in setA. When both setA::Tn5 mutants were cultured in minimal medium containing fructose, genes encoding the T3SS master regulator HrpL and effector AvrRpm1 were expressed at lower levels relative to that of a wild-type strain. Decreased hrpL and avrRpm1 expression also occurred in a setA::Tn5 mutant in response to glucose, sucrose, galactose, and mannitol, demonstrating that setA is genetically required for T3SS induction by many different sugars. Expression of upstream regulators hrpR/S and rpoN was not altered in setA::Tn5, indicating that SetA positively regulates hrpL expression independently of increased transcription of these genes. In addition to decreased response to defined sugar signals, a setA::Tn5 mutant had decreased T3SS deployment during infection and was compromised in its ability to grow in planta and cause disease. These data suggest that SetA is necessary for P. syringae to effectively respond to T3SS-inducing sugar signals encountered during infection.


Asunto(s)
Proteínas Bacterianas/fisiología , Pseudomonas syringae/genética , Azúcares/química , Factores de Transcripción/fisiología , Sistemas de Secreción Tipo III/genética , Arabidopsis/microbiología , Elementos Transponibles de ADN , Proteínas de Unión al ADN , Regulación Bacteriana de la Expresión Génica , Mutagénesis , Enfermedades de las Plantas/microbiología
2.
Plant Direct ; 4(9): e00267, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33005857

RESUMEN

The medicinal plant Catharanthus roseus produces numerous secondary metabolites of interest for the treatment of many diseases - most notably for the terpene indole alkaloid (TIA) vinblastine, which is used in the treatment of leukemia and Hodgkin's lymphoma. Historically, methyl jasmonate (MeJA) has been used to induce TIA production, but in the past, this has only been investigated in whole seedlings, cell culture, or hairy root culture. This study examines the effects of the phytohormones MeJA and ethylene on the induction of TIA biosynthesis and accumulation in the shoots and roots of 8-day-old seedlings of two varieties of C. roseus. Using LCMS and RT-qPCR, we demonstrate the importance of variety selection, as we observe markedly different induction patterns of important TIA precursor compounds. Additionally, both phytohormone choice and concentration have significant effects on TIA biosynthesis. Finally, our study suggests that several early-induction pathway steps as well as pathway-specific genes are likely to be transcriptionally regulated. Our findings highlight the need for a complete set of'omics resources in commonly used C. roseus varieties and the need for caution when extrapolating results from one cultivar to another.

3.
F1000Res ; 9: 1175, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33123350

RESUMEN

Cyclophilin A/DIAGEOTROPICA (DGT) has been linked to auxin-regulated development in tomato and appears to affect multiple developmental pathways. Loss of DGT function results in a pleiotropic phenotype that is strongest in the roots, including shortened roots with no lateral branching. Here, we present an RNA-Seq dataset comparing the gene expression profiles of wildtype ('Ailsa Craig') and dgt tissues from three spatially separated developmental stages of the tomato root tip, with three replicates for each tissue and genotype. We also identify differentially expressed genes, provide an initial comparison of genes affected in each genotype and tissue, and provide the pipeline used to analyze the data. Further analysis of this dataset can be used to gain insight into the effects of DGT on various root developmental pathways in tomato.


Asunto(s)
Solanum lycopersicum , Ciclofilina A , Ácidos Indolacéticos , Solanum lycopersicum/genética , Raíces de Plantas/genética , RNA-Seq
4.
Plant Sci ; 274: 441-450, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30080633

RESUMEN

Identifying osmotic stress-responsive transcription factors (TFs) can facilitate discovery of master regulators mediating salt and/or drought tolerance. To date, few RNA-seq datasets for high resolution time course of salt or drought stress treatments are publicly available for certain crop species. However, such datasets may be available for other crops, and in combination with orthology analysis may be used to infer candidate osmotic stress regulators across distantly related species. Here, we demonstrate the utility of this approach for identification and validation of osmotic stress-responsive transcription factors in tomato. First, we developed physiologically calibrated salt and dehydration-responsive systems for tomato cultivars using real time measurements of transpiration rate and photosynthetic efficiency. Next, we identified differentially expressed TFs in rice using raw RNA-seq datasets for a publicly available salt stress time course. Putative salt stress-responsive TFs in tomato were then inferred based on their orthology with the transcription factors upregulated by salt in rice. Finally, using our osmotic stress system, we experimentally validated stress-responsive expression of predicted tomato candidates representing NUCLEAR FACTOR Y, SQUAMOSA PROMOTER BINDING, and NAC domain TF families. Quantification of transcript copy numbers confirmed that mRNAs encoding all three TFs were strongly upregulated not only by salt but also by drought stress. Induction by both salt and dehydration occurred in a temporal manner across diverse tomato cultivars, suggesting that the identified TFs may play important roles in regulating osmotic stress responses.


Asunto(s)
Factor de Unión a CCAAT/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Factor de Unión a CCAAT/genética , Productos Agrícolas , Sequías , Solanum lycopersicum/fisiología , Presión Osmótica , Proteínas de Plantas/genética , Salinidad , Sales (Química) , Estrés Fisiológico , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA