Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Pollut ; 269: 116229, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33321310

RESUMEN

In the present study, the daily dose in terms of particle surface area received by citizens living in different low- and middle-income countries, characterized by different lifestyles, habits, and climates, was evaluated. The level of exposure to submicron particles and the dose received by the populations of Accra (Ghana), Cairo (Egypt), Florianopolis (Brazil), and Nur-Sultan (Kazakhstan) were analyzed. A direct exposure assessment approach was adopted to measure the submicron particle concentration levels of volunteers at a personal scale during their daily activities. Non-smoking adult volunteers performing non-industrial jobs were considered. Exposure data were combined with time-activity pattern data (characteristic of each population) and the inhalation rates to estimate the daily dose in terms of particle surface area. The received dose of the populations under investigation varied from 450 mm2 (Florianopolis, Brazil) to 1300 mm2 (Cairo, Egypt). This work highlights the different contributions of the microenvironments to the daily dose with respect to high-income western populations. It was evident that the contribution of the Cooking & Eating microenvironment to the total exposure (which was previously proven to be one of the main exposure routes for western populations) was only 8%-14% for low- and middle-income populations. In contrast, significant contributions were estimated for Outdoor day and Transport microenvironments (up to 20% for Cairo, Egypt) and the Sleeping & Resting microenvironment (up to 28% for Accra, Ghana), highlighting the effects of different site-specific lifestyles (e.g. time-activity patterns), habits, socioeconomic conditions, climates, and outdoor air quality.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Adulto , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Brasil , Países en Desarrollo , Egipto , Monitoreo del Ambiente , Ghana , Humanos , Kazajstán , Tamaño de la Partícula , Material Particulado/análisis
2.
Artículo en Inglés | MEDLINE | ID: mdl-28556812

RESUMEN

(1) Background: The assessment of airborne particulate matter (PM) and ultrafine particles (UFPs) in battlefield scenarios is a topic of particular concern; (2) Methods: Size distribution, concentration, and chemical composition of UFPs during operative military training activities (target drone launches, ammunition blasting, and inert bomb impact) were investigated using an electric low-pressure impactor (ELPI+) and a scanning electron microscope (SEM), equipped with energy-dispersive spectroscopy (EDS); (3) Results: The median of UFPs, measured for all sampling periods and at variable distance from sources, was between 1.02 × 10³ and 3.75 × 10³ particles/cm³ for drone launches, between 3.32 × 10³ and 15.4 × 10³ particles/cm³ for the ammunition blasting and from 7.9 × 10³ to 1.3 × 104 particles/cm³ for inert launches. Maximum peak concentrations, during emitting sources starting, were 75.5 × 106 and 17.9 × 106 particles/cm³, respectively. Particles from the drone launches were predominantly composed of silicon (Si), iron (Fe) and calcium (Ca), and those from the blasting campaigns by magnesium (Mg), sulphur (S), aluminum (Al), iron (Fe), barium (Ba) and silicon (Si); (4) Conclusions: The investigated sources produced UFPs with median values lower than other anthropogenic sources, and with a similar chemical composition.


Asunto(s)
Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Contaminantes Atmosféricos/química , Monitoreo del Ambiente/métodos , Humanos , Metaloides/análisis , Metales/análisis , Personal Militar , Exposición Profesional/análisis , Tamaño de la Partícula , Material Particulado/química , Espectrometría por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA