Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Hum Mol Genet ; 24(16): 4674-85, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26022996

RESUMEN

We searched a gene expression dataset comprised of 634 schizophrenia (SZ) cases and 713 controls for expression outliers (i.e., extreme tails of the distribution of transcript expression values) with SZ cases overrepresented compared with controls. These outlier genes were enriched for brain expression and for genes known to be associated with neurodevelopmental disorders. SZ cases showed higher outlier burden (i.e., total outlier events per subject) than controls for genes within copy number variants (CNVs) associated with SZ or neurodevelopmental disorders. Outlier genes were enriched for CNVs and for rare putative regulatory variants, but this only explained a small proportion of the outlier subjects, highlighting the underlying presence of additional genetic and potentially, epigenetic mechanisms.


Asunto(s)
Epigénesis Genética , Predisposición Genética a la Enfermedad , Variación Genética , Esquizofrenia , Transcriptoma , Femenino , Humanos , Masculino , Esquizofrenia/genética , Esquizofrenia/metabolismo
2.
Am J Hum Genet ; 95(6): 744-53, 2014 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-25434007

RESUMEN

Schizophrenia (SZ) genome-wide association studies (GWASs) have identified common risk variants in >100 susceptibility loci; however, the contribution of rare variants at these loci remains largely unexplored. One of the strongly associated loci spans MIR137 (miR137) and MIR2682 (miR2682), two microRNA genes important for neuronal function. We sequenced ∼6.9 kb MIR137/MIR2682 and upstream regulatory sequences in 2,610 SZ cases and 2,611 controls of European ancestry. We identified 133 rare variants with minor allele frequency (MAF) <0.5%. The rare variant burden in promoters and enhancers, but not insulators, was associated with SZ (p = 0.021 for MAF < 0.5%, p = 0.003 for MAF < 0.1%). A rare enhancer SNP, 1:g.98515539A>T, presented exclusively in 11 SZ cases (nominal p = 4.8 × 10(-4)). We further identified its risk allele T in 2 of 2,434 additional SZ cases, 11 of 4,339 bipolar (BP) cases, and 3 of 3,572 SZ/BP study controls and 1,688 population controls; yielding combined p values of 0.0007, 0.0013, and 0.0001 for SZ, BP, and SZ/BP, respectively. The risk allele T of 1:g.98515539A>T reduced enhancer activity of its flanking sequence by >50% in human neuroblastoma cells, predicting lower expression of MIR137/MIR2682. Both empirical and computational analyses showed weaker transcription factor (YY1) binding by the risk allele. Chromatin conformation capture (3C) assay further indicated that 1:g.98515539A>T influenced MIR137/MIR2682, but not the nearby DPYD or LOC729987. Our results suggest that rare noncoding risk variants are associated with SZ and BP at MIR137/MIR2682 locus, with risk alleles decreasing MIR137/MIR2682 expression.


Asunto(s)
Trastorno Bipolar/genética , Regulación de la Expresión Génica/genética , Variación Genética , MicroARNs/genética , Esquizofrenia/genética , Alelos , Secuencia de Bases , Línea Celular Tumoral , Frecuencia de los Genes , Genes Reporteros , Sitios Genéticos , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas/genética , Riesgo , Análisis de Secuencia de ADN
3.
J Biol Chem ; 289(4): 2099-111, 2014 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-24297175

RESUMEN

The Kv7 family (Kv7.1-7.5) of voltage-activated potassium channels contributes to the maintenance of resting membrane potential in excitable cells. Previously, we provided pharmacological and electrophysiological evidence that Kv7.4 and Kv7.5 form predominantly heteromeric channels and that Kv7 activity is regulated by protein kinase C (PKC) in response to vasoconstrictors in vascular smooth muscle cells. Direct evidence for Kv7.4/7.5 heteromer formation, however, is lacking. Furthermore, it remains to be determined whether both subunits are regulated by PKC. Utilizing proximity ligation assays to visualize single molecule interactions, we now show that Kv7.4/Kv.7.5 heteromers are endogenously expressed in vascular smooth muscle cells. Introduction of dominant-negative Kv7.4 and Kv7.5 subunits in mesenteric artery myocytes reduced endogenous Kv7 currents by 84 and 76%, respectively. Expression of an inducible protein kinase Cα (PKCα) translocation system revealed that PKCα activation is sufficient to suppress endogenous Kv7 currents in A7r5 rat aortic and mesenteric artery smooth muscle cells. Arginine vasopressin (100 and 500 pm) and the PKC activator phorbol 12-myristate 13-acetate (1 nm) each inhibited human (h) Kv7.5 and hKv7.4/7.5, but not hKv7.4 channels expressed in A7r5 cells. A decrease in hKv7.5 and hKv7.4/7.5 current densities was associated with an increase in PKC-dependent phosphorylation of the channel proteins. These findings provide further evidence for a differential regulation of Kv7.4 and Kv7.5 channel subunits by PKC-dependent phosphorylation and new mechanistic insights into the role of heteromeric subunit assembly for regulation of vascular Kv7 channels.


Asunto(s)
Canales de Potasio KCNQ/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteína Quinasa C-alfa/metabolismo , Animales , Aorta/citología , Aorta/metabolismo , Arginina Vasopresina/farmacología , Carcinógenos/farmacología , Línea Celular , Humanos , Canales de Potasio KCNQ/genética , Masculino , Arterias Mesentéricas/citología , Arterias Mesentéricas/metabolismo , Mutación Missense , Miocitos del Músculo Liso/citología , Proteína Quinasa C-alfa/genética , Ratas , Ratas Sprague-Dawley , Acetato de Tetradecanoilforbol/farmacología , Vasoconstrictores/farmacología
4.
Hum Mol Genet ; 22(24): 5001-14, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23904455

RESUMEN

Schizophrenia genome-wide association studies (GWAS) have identified common SNPs, rare copy number variants (CNVs) and a large polygenic contribution to illness risk, but biological mechanisms remain unclear. Bioinformatic analyses of significantly associated genetic variants point to a large role for regulatory variants. To identify gene expression abnormalities in schizophrenia, we generated whole-genome gene expression profiles using microarrays on lymphoblastoid cell lines (LCLs) from 413 cases and 446 controls. Regression analysis identified 95 transcripts differentially expressed by affection status at a genome-wide false discovery rate (FDR) of 0.05, while simultaneously controlling for confounding effects. These transcripts represented 89 genes with functions such as neurotransmission, gene regulation, cell cycle progression, differentiation, apoptosis, microRNA (miRNA) processing and immunity. This functional diversity is consistent with schizophrenia's likely significant pathophysiological heterogeneity. The overall enrichment of immune-related genes among those differentially expressed by affection status is consistent with hypothesized immune contributions to schizophrenia risk. The observed differential expression of extended major histocompatibility complex (xMHC) region histones (HIST1H2BD, HIST1H2BC, HIST1H2BH, HIST1H2BG and HIST1H4K) converges with the genetic evidence from GWAS, which find the xMHC to be the most significant susceptibility locus. Among the differentially expressed immune-related genes, B3GNT2 is implicated in autoimmune disorders previously tied to schizophrenia risk (rheumatoid arthritis and Graves' disease), and DICER1 is pivotal in miRNA processing potentially linking to miRNA alterations in schizophrenia (e.g. MIR137, the second strongest GWAS finding). Our analysis provides novel candidate genes for further study to assess their potential contribution to schizophrenia.


Asunto(s)
Regulación de la Expresión Génica , Esquizofrenia/genética , Transcriptoma , Adulto , Estudios de Casos y Controles , Línea Celular , Femenino , Redes Reguladoras de Genes , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Esquizofrenia/metabolismo , Transducción de Señal
5.
Mol Cancer Ther ; 19(8): 1613-1622, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32499300

RESUMEN

The PI3K pathway is considered a master regulator for cancer due to its frequent activation, making it an attractive target for pharmacologic intervention. While substantial efforts have been made to develop drugs targeting PI3K signaling, few drugs have been able to achieve the inhibition necessary for effective tumor control at tolerated doses. HSP90 is a chaperone protein that is overexpressed and activated in many tumors and as a consequence, small-molecule ligands of HSP90 are preferentially retained in tumors up to 20 times longer than in normal tissue. We hypothesize that the generation of conjugates that use a HSP90-targeting ligand and a payload such as copanlisib, may open the narrow therapeutic window of this and other PI3K inhibitors. In support of this hypothesis, we have generated a HSP90-PI3K drug conjugate, T-2143 and utilizing xenograft models, demonstrate rapid and sustained tumor accumulation of the conjugate, deep pathway inhibition, and superior efficacy than the PI3K inhibitor on its own. Selective delivery of T-2143 and the masking of the inhibitor active site was also able to mitigate a potentially dose-limiting side effect of copanlisib, hyperglycemia. These data demonstrate that by leveraging the preferential accumulation of HSP90-targeting ligands in tumors, we can selectively deliver a PI3K inhibitor leading to efficacy in multiple tumor models without hyperglycemia in mice. These data highlight a novel drug delivery strategy that allows for the potential opening of a narrow therapeutic window through specific tumor delivery of anticancer payloads and reduction of toxicity.


Asunto(s)
Sistemas de Liberación de Medicamentos , Proteínas HSP90 de Choque Térmico/metabolismo , Neoplasias/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Animales , Apoptosis , Proliferación Celular , Femenino , Proteínas HSP90 de Choque Térmico/química , Humanos , Ratones , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/química , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Transl Psychiatry ; 8(1): 158, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115913

RESUMEN

The dopaminergic hypothesis of schizophrenia (SZ) postulates that dopaminergic over activity causes psychosis, a central feature of SZ, based on the observation that blocking dopamine (DA) improves psychotic symptoms. DA is known to have both receptor- and non-receptor-mediated effects, including oxidative mechanisms that lead to apoptosis. The role of DA-mediated oxidative processes in SZ has been little studied. Here, we have used a cell perturbation approach and measured transcriptomic profiles by RNAseq to study the effect of DA exposure on transcription in B-cell transformed lymphoblastoid cell lines (LCLs) from 514 SZ cases and 690 controls. We found that DA had widespread effects on both cell growth and gene expression in LCLs. Overall, 1455 genes showed statistically significant differential DA response in SZ cases and controls. This set of differentially expressed genes is enriched for brain expression and for functions related to immune processes and apoptosis, suggesting that DA may play a role in SZ pathogenesis through modulating those systems. Moreover, we observed a non-significant enrichment of genes near genome-wide significant SZ loci and with genes spanned by SZ-associated copy number variants (CNVs), which suggests convergent pathogenic mechanisms detected by both genetic association and gene expression. The study suggests a novel role of DA in the biological processes of immune and apoptosis that may be relevant to SZ pathogenesis. Furthermore, our results show the utility of pathophysiologically relevant perturbation experiments to investigate the biology of complex mental disorders.


Asunto(s)
Apoptosis/efectos de los fármacos , Antagonistas de Dopamina/farmacología , Esquizofrenia/genética , Esquizofrenia/inmunología , Transcriptoma , Encéfalo/inmunología , Encéfalo/metabolismo , Estudios de Casos y Controles , Línea Celular , Proliferación Celular/efectos de los fármacos , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Masculino , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA