RESUMEN
Vibrational quanta of melamine and its tautomer are analyzed at the single-molecule level on Cu(100) with inelastic electron tunneling spectroscopy. The on-surface tautomerization gives rise to markedly different low-energy vibrational spectra of the isomers, as evidenced by a shift in mode energies and a variation in inelastic cross sections. Spatially resolved spectroscopy reveals the maximum signal strength on an orbital nodal plane, excluding resonant inelastic tunneling as the mechanism underlying the quantum excitations. Decreasing the probe-molecule separation down to the formation of a chemical bond between the melamine amino group and the Cu apex atom of the tip leads to a quenched vibrational spectrum with different excitation energies. Density functional and electron transport calculations reproduce the experimental findings and show that the shift in the quantum energies applies to internal molecular bending modes. The simulations moreover suggest that the bond formation represents an efficient manner of tautomerizing the molecule.
RESUMEN
The pervasive phenomenon of friction has been studied at the nanoscale via a controlled manipulation of single atoms and molecules with a metallic tip, which enabled a precise determination of the static friction force necessary to initiate motion. However, little is known about the atomic dynamics during manipulation. Here, we reveal the complete manipulation process of a CO molecule on a Cu(110) surface at low temperatures using a combination of noncontact atomic force microscopy and density functional theory simulations. We found that an intermediate state, inaccessible for the far-tip position, is enabled in the reaction pathway for the close-tip position, which is crucial to understanding the manipulation process, including dynamic friction. Our results show how friction forces can be controlled and optimized, facilitating new fundamental insights for tribology.
RESUMEN
Open-shell graphene nanoribbons have become promising candidates for future applications, including quantum technologies. Here, we characterize magnetic states hosted by chiral graphene nanoribbons (chGNRs). The substitution of a hydrogen atom at the chGNR edge by a ketone effectively adds one pz electron to the π-electron network, producing an unpaired π-radical. A similar scenario occurs for regular ketone-functionalized chGNRs in which one ketone is missing. Two such radical states can interact via exchange coupling, and we study those interactions as a function of their relative position, which includes a remarkable dependence on the chirality, as well as on the nature of the surrounding ribbon, that is, with or without ketone functionalization. Besides, we determine the parameters whereby this type of system with oxygen heteroatoms can be adequately described within the widely used mean-field Hubbard model. Altogether, we provide insight to both theoretically model and devise GNR-based nanostructures with tunable magnetic properties.
RESUMEN
Junctions composed of two crossed graphene nanoribbons (GNRs) have been theoretically proposed as electron beam splitters where incoming electron waves in one GNR can be split coherently into propagating waves in two outgoing terminals with nearly equal amplitude and zero back-scattering. Here we scrutinize this effect for devices composed of narrow zigzag GNRs taking explicitly into account the role of Coulomb repulsion that leads to spin-polarized edge states within mean-field theory. We show that the beam-splitting effect survives the opening of the well-known correlation gap and, more strikingly, that a spin-dependent scattering potential emerges which spin polarizes the transmitted electrons in the two outputs. By studying different ribbons and intersection angles we provide evidence that this is a general feature with edge-polarized nanoribbons. A near-perfect polarization can be achieved by joining several junctions in series. Our findings suggest that GNRs are interesting building blocks in spintronics and quantum technologies with applications for interferometry and entanglement.
RESUMEN
Triangulene nanographenes are open-shell molecules with predicted high spin state due to the frustration of their conjugated network. Their long-sought synthesis became recently possible over a metal surface. Here, we present a macrocycle formed by six [3]triangulenes, which was obtained by combining the solution synthesis of a dimethylphenyl-anthracene cyclic hexamer and the on-surface cyclodehydrogenation of this precursor over a gold substrate. The resulting triangulene nanostar exhibits a collective spin state generated by the interaction of its 12 unpaired π-electrons along the conjugated lattice, corresponding to the antiferromagnetic ordering of six S=1 sites (one per triangulene unit). Inelastic electron tunneling spectroscopy resolved three spin excitations connecting the singlet ground state with triplet states. The nanostar behaves close to predictions from the Heisenberg model of an S=1 spin ring, representing a unique system to test collective spin modes in cyclic systems.
RESUMEN
Graphene can develop large magnetic moments in custom-crafted open-shell nanostructures such as triangulene, a triangular piece of graphene with zigzag edges. Current methods of engineering graphene nanosystems on surfaces succeeded in producing atomically precise open-shell structures, but demonstration of their net spin remains elusive to date. Here, we fabricate triangulenelike graphene systems and demonstrate that they possess a spin S=1 ground state. Scanning tunneling spectroscopy identifies the fingerprint of an underscreened S=1 Kondo state on these flakes at low temperatures, signaling the dominant ferromagnetic interactions between two spins. Combined with simulations based on the meanfield Hubbard model, we show that this S=1 π paramagnetism is robust and can be turned into an S=1/2 state by additional H atoms attached to the radical sites. Our results demonstrate that π paramagnetism of high-spin graphene flakes can survive on surfaces, opening the door to study the quantum behavior of interacting π spins in graphene systems.
RESUMEN
Graphene nanoribbons (GNRs), low-dimensional platforms for carbon-based electronics, show the promising perspective to also incorporate spin polarization in their conjugated electron system. However, magnetism in GNRs is generally associated with localized states around zigzag edges, difficult to fabricate and with high reactivity. Here we demonstrate that magnetism can also be induced away from physical GNR zigzag edges through atomically precise engineering topological defects in its interior. A pair of substitutional boron atoms inserted in the carbon backbone breaks the conjugation of their topological bands and builds two spin-polarized boundary states around them. The spin state was detected in electrical transport measurements through boron-substituted GNRs suspended between the tip and the sample of a scanning tunneling microscope. First-principle simulations find that boron pairs induce a spin 1, which is modified by tuning the spacing between pairs. Our results demonstrate a route to embed spin chains in GNRs, turning them into basic elements of spintronic devices.
RESUMEN
Electrons in graphene can show diffraction and interference phenomena fully analogous to light thanks to their Dirac-like energy dispersion. However, it is not clear how this optical analogy persists in nanostructured graphene, for example, with pores. Nanoporous graphene (NPG) consisting of linked graphene nanoribbons has recently been fabricated using molecular precursors and bottom-up assembly (Moreno et al. Science 2018, 360, 199). We predict that electrons propagating in NPG exhibit the interference Talbot effect, analogous to photons in coupled waveguides. Our results are obtained by parameter-free atomistic calculations of real-sized NPG samples based on seamlessly integrated density functional theory and tight-binding regions. We link the origins of this interference phenomenon to the band structure of the NPG. Most importantly, we demonstrate how the Talbot effect may be detected experimentally using dual-probe scanning tunneling microscopy. Talbot interference of electron waves in NPG or other related materials may open up new opportunities for future quantum electronics, computing, or sensing.
RESUMEN
A freestanding molecular wire is placed vertically on Au(111) using a platform molecule and contacted by a scanning tunneling microscope. Despite the simplicity of the single-molecule junction, its conductance G reproducibly varies in a complex manner with the electrode separation. Transport calculations show that G is controlled by a deformation of the molecule, a symmetry mismatch between the tip and molecule orbitals, and the breaking of a C≡C triple in favor of a AuâCâC bond. This tip-controlled reversible bond formation or rupture alters the electronic spectrum of the junction and the states accessible for transport, resulting in an order of magnitude variation of the conductance.
RESUMEN
Here we show scanning tunneling microscopy (STM), noncontact atomic force microscopy (AFM), and inelastic electron tunneling spectroscopy (IETS) measurements on an organic molecule with a CO-terminated tip at 5 K. The high-resolution contrast observed simultaneously in all channels unambiguously demonstrates the common imaging mechanism in STM/AFM/IETS, related to the lateral bending of the CO-functionalized tip. The IETS spectroscopy reveals that the submolecular contrast at 5 K consists of both renormalization of vibrational frequency and variation of the amplitude of the IETS signal. This finding is also corroborated by first principles simulations. We extend accordingly the probe-particle AFM/STM/IETS model to include these two main ingredients necessary to reproduce the high-resolution IETS contrast. We also employ the first principles simulations to get more insight into a different response of frustrated translation and rotational modes of the CO tip during imaging.
RESUMEN
PURPOSE: The purpose of this study was to evaluate the influence of occupational noise (current and cumulative doses) and psychosocial work factors (psychological demands and decision latitude) on tinnitus occurrence among workers, using objective and non-self-reported exposure measures to prevent reporting bias. METHODS: In a cross-sectional study, we analyzed data from a Danish survey from 2009 to 2010 that included 534 workers from children day care units and 10 manufacturing trades. Associations between risk factors (current noise exposure, cumulative noise exposure and psychosocial working conditions) and tinnitus were analyzed with logistic regression. RESULTS: We found no statistically significant associations between either current [OR 0.95 (95% CI 0.89; 1.01)] or cumulative [OR 0.93 (95% CI 0.81; 1.06)] occupational noise exposure and tinnitus. Likewise, results for psychosocial working conditions showed no statistically significant association between work place decision latitude [OR 1.06 (95% CI 0.94; 1.13)] or psychological demands [OR 1.07 (95% CI 0.90; 1.26)] and tinnitus. CONCLUSIONS: Our results suggest that current Danish occupational noise levels (in combination with relevant noise protection) are not associated with tinnitus. Also, results indicated that the psychosocial working conditions we observed in this cohort of mainly industrial workers were not associated with tinnitus. Therefore, psychosocial working conditions comparable to those observed in this study are probably not relevant to take into account in the evaluation of workers presenting with tinnitus.
Asunto(s)
Ruido en el Ambiente de Trabajo/efectos adversos , Exposición Profesional/efectos adversos , Medio Social , Acúfeno/epidemiología , Lugar de Trabajo/psicología , Estudios Transversales , Dinamarca/epidemiología , Humanos , Modelos Logísticos , Estrés Psicológico/epidemiología , Encuestas y Cuestionarios , Lugar de Trabajo/normasRESUMEN
AIMS: To survey current, Danish industrial noise levels and the use of hearing protection devices (HPD) over a 10-year period and to characterise the association between occupational noise and hearing threshold shift in the same period. Furthermore, the risk of hearing loss among the baseline and the follow-up populations according to first year of occupational noise exposure is evaluated. MATERIALS AND METHODS: In 2001-2003, we conducted a baseline survey of noise- and hearing-related disorders in 11 industries with suspected high noise levels. In 2009-2010, we were able to follow up on 271 out of the 554 baseline workers (49%). Mean noise levels per industry and self-reported HPD use are described at baseline and follow-up. The association between cumulative occupational noise exposure and hearing threshold shift over the 10-year period was assessed using linear regression, and the risk of hearing loss according to year of first occupational noise exposure was evaluated with logistic regression. RESULTS: Over the 10-year period, mean noise levels declined from 83.9 dB(A) to 82.8 dB(A), and for workers exposed >85 dB(A), the use of HPD increased from 70.1 to 76.1%. We found a weak, statistically insignificant, inverse association between higher ambient cumulative noise exposure and poorer hearing (-0.10 dB hearing threshold shift per dB-year (95% confidence interval (CI): -0.36; 0.16)). The risk of hearing loss seemed to increase with earlier first year of noise exposure, but odds ratios were only statistically significant among baseline participants with first exposure before the 1980s (odds ratio: 1.90, 95% CI: 1.11; 3.22). CONCLUSIONS: We observed declining industrial noise levels, increased use of HPD and no significant impact on hearing thresholds from current ambient industrial noise levels, which indicated a successful implementation of Danish hearing conservation programs.
Asunto(s)
Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/prevención & control , Ruido en el Ambiente de Trabajo , Enfermedades Profesionales/etiología , Enfermedades Profesionales/prevención & control , Exposición Profesional/análisis , Adulto , Audiometría de Tonos Puros , Dinamarca , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Encuestas y CuestionariosRESUMEN
Dangling bond (DB) arrays on Si(001):H and Ge(001):H surfaces can be patterned with atomic precision and they exhibit complex and rich physics making them interesting from both technological and fundamental perspectives. But their complex behavior often makes scanning tunneling microscopy (STM) images difficult to interpret and simulate. Recently it was shown that low-temperature imaging of unoccupied states of an unpassivated dimer on Ge(001):H results in a symmetric butterfly-like STM pattern, despite the fact that the equilibrium dimer configuration is expected to be a bistable, buckled geometry. Here, based on a thorough characterization of the low-bias switching events on Ge(001):H, we propose a new imaging model featuring a dynamical two-state rate equation. On both Si(001):H and Ge(001):H, this model allows us to reproduce the features of the observed symmetric empty-state images which strongly corroborates the idea that the patterns arise due to fast switching events and provides an insight into the relationship between the tunneling current and switching rates. We envision that our new imaging model can be applied to simulate other bistable systems where fluctuations arise from transiently charged electronic states.
RESUMEN
The objective of this study was to evaluate the influence of atherogenic risk factors on hearing thresholds. In a cross-sectional study we analyzed data from a Danish survey in 2009-2010 on physical and psychological working conditions. The study included 576 white- and blue-collar workers from children's day care units, financial services and 10 manufacturing trades. Associations between atherogenic risk factors (blood lipids, glycosylated hemoglobin, smoking habits, body mass index (BMI), and ambulatory blood pressure) and hearing thresholds were analyzed using multiple linear regression models. Adjusted results suggested associations between smoking, high BMI and triglyceride level and low high-density lipoprotein level and increased low-frequency hearing thresholds (average of pure-tone hearing thresholds at 0.25, 0.5 and 1 kHz). Furthermore, an increasing load of atherogenic risk factors seemed associated with increased low-frequency hearing thresholds, but only at a borderline level of statistical significance. Associations were generally strongest with hearing levels of the worst hearing ear. We found no statistically significant associations between atherogenic risk factors and high-frequency hearing thresholds (average of pure-tone hearing thresholds at 4, 6 and 8 kHz).
Asunto(s)
Aterosclerosis/epidemiología , Umbral Auditivo/fisiología , Diabetes Mellitus/epidemiología , Pérdida Auditiva Sensorineural/epidemiología , Hiperlipidemias/epidemiología , Hipertensión/epidemiología , Ruido en el Ambiente de Trabajo/estadística & datos numéricos , Obesidad/epidemiología , Fumar/epidemiología , Adulto , Anciano , Monitoreo Ambulatorio de la Presión Arterial , LDL-Colesterol/sangre , Estudios de Cohortes , Estudios Transversales , Dinamarca/epidemiología , Diabetes Mellitus/metabolismo , Femenino , Hemoglobina Glucada/metabolismo , Pérdida Auditiva Sensorineural/fisiopatología , Humanos , Hiperlipidemias/sangre , Masculino , Persona de Mediana Edad , Factores de Riesgo , Triglicéridos/sangre , Adulto JovenRESUMEN
OBJECTIVE: Otoscopy is a key clinical examination used by multiple healthcare providers but training and testing of otoscopy skills remain largely uninvestigated. Simulator-based assessment of otoscopy skills exists, but evidence on its validity is scarce. In this study, we explored automated assessment and performance metrics of an otoscopy simulator through collection of validity evidence according to Messick's framework. METHODS: Novices and experienced otoscopists completed a test program on the Earsi otoscopy simulator. Automated assessment of diagnostic ability and performance were compared with manual ratings of technical skills. Reliability of assessment was evaluated using Generalizability theory. Linear mixed models and correlation analysis were used to compare automated and manual assessments. Finally, we used the contrasting groups method to define a pass/fail level for the automated score. RESULTS: A total of 12 novices and 12 experienced otoscopists completed the study. We found an overall G-coefficient of .69 for automated assessment. The experienced otoscopists achieved a significantly higher mean automated score than the novices (59.9% (95% CI [57.3%-62.6%]) vs. 44.6% (95% CI [41.9%-47.2%]), P < .001). For the manual assessment of technical skills, there was no significant difference, nor did the automated score correlate with the manually rated score (Pearson's r = .20, P = .601). We established a pass/fail standard for the simulator's automated score of 49.3%. CONCLUSION: We explored validity evidence supporting an otoscopy simulator's automated score, demonstrating that this score mainly reflects cognitive skills. Manual assessment therefore still seems necessary at this point and external video-recording is necessary for valid assessment. To improve the reliability, the test course should include more cases to achieve a higher G-coefficient and a higher pass/fail standard should be used.
RESUMEN
Indenofluorenes are non-benzenoid conjugated hydrocarbons that have received great interest owing to their unusual electronic structure and potential applications in nonlinear optics and photovoltaics. Here we report the generation of unsubstituted indeno[1,2-a]fluorene on various surfaces by the cleavage of two C-H bonds in 7,12-dihydroindeno[1,2-a]fluorene through voltage pulses applied by the tip of a combined scanning tunnelling microscope and atomic force microscope. On bilayer NaCl on Au(111), indeno[1,2-a]fluorene is in the neutral charge state, but it exhibits charge bistability between neutral and anionic states on the lower-workfunction surfaces of bilayer NaCl on Ag(111) and Cu(111). In the neutral state, indeno[1,2-a]fluorene exhibits one of two ground states: an open-shell π-diradical state, predicted to be a triplet by density functional and multireference many-body perturbation theory calculations, or a closed-shell state with a para-quinodimethane moiety in the as-indacene core. We observe switching between open- and closed-shell states of a single molecule by changing its adsorption site on NaCl.
RESUMEN
Open-shell polycyclic aromatic hydrocarbons (PAHs) represent promising building blocks for carbon-based functional magnetic materials. Their magnetic properties stem from the presence of unpaired electrons localized in radical states of π character. Consequently, these materials are inclined to exhibit spin delocalization, form extended collective states, and respond to the flexibility of the molecular backbones. However, they are also highly reactive, requiring structural strategies to protect the radical states from reacting with the environment. Here, we demonstrate that the open-shell ground state of the diradical 2-OS survives on a Au(111) substrate as a global singlet formed by two unpaired electrons with antiparallel spins coupled through a conformational-dependent interaction. The 2-OS molecule is a "protected" derivative of the Chichibabin's diradical, featuring a nonplanar geometry that destabilizes the closed-shell quinoidal structure. Using scanning tunneling microscopy (STM), we localized the two interacting spins at the molecular edges, and detected an excited triplet state a few millielectronvolts above the singlet ground state. Mean-field Hubbard simulations reveal that the exchange coupling between the two spins strongly depends on the torsional angles between the different molecular moieties, suggesting the possibility of influencing the molecule's magnetic state through structural changes. This was demonstrated here using the STM tip to manipulate the molecular conformation, while simultaneously detecting changes in the spin excitation spectrum. Our work suggests the potential of these PAHs as all-carbon spin-crossover materials.
RESUMEN
We study theoretically electron interference in a Mach-Zehnder-like geometry formed by four zigzag graphene nanoribbons arranged in parallel pairs, one on top of the other, such that they form intersection angles of 60∘. Depending on the interribbon separation, each intersection can be tuned to act either as an electron beam splitter or as a mirror, enabling tuneable circuitry with interfering pathways. Based on the mean-field Hubbard model and Green's function techniques, we evaluate the electron transport properties of such eight-terminal devices and identify pairs of terminals that are subject to self-interference. We further show that the scattering matrix formalism in the approximation of independent scattering at the four individual junctions provides accurate results as compared with the Green's function description, allowing for a simple interpretation of the interference process between two dominant pathways. This enables us to characterize the device sensitivity to phase shifts from an external magnetic flux according to the Aharonov-Bohm effect as well as from small geometric variations in the two path lengths. The proposed devices could find applications as magnetic field sensors and as detectors of phase shifts induced by local scatterers on the different segments, such as adsorbates, impurities or defects. The setup could also be used to create and study quantum entanglement.
RESUMEN
OBJECTIVE: 3-D printing offers convenient and low-cost mastoidectomy training; nonetheless, training benefits using 3-D-printed temporal bones remain largely unexplored. In this study, we have collected validity evidence for a low-cost, 3-D-printed temporal bone for mastoidectomy training and established a credible pass/fail score for performance on the model. STUDY DESIGN: A prospective educational study gathering validity evidence using Messick's validity framework. SETTING: Seven Danish otorhinolaryngology training institutions. PARTICIPANTS: Eighteen otorhinolaryngology residents (novices) and 11 experienced otosurgeons (experts). INTERVENTION: Residents and experienced otosurgeons each performed two to three anatomical mastoidectomies on a low-cost, 3-D-printed temporal bone model produced in-house. After drilling, mastoidectomy performances were rated by three blinded experts using a 25-item modified Welling scale (WS). MAIN OUTCOME MEASURE: Validity evidence using Messick's framework including reliability assessment applying both classical test theory and Generalizability theory. RESULTS: Novices achieved a mean score of 13.9 points; experienced otosurgeons achieved 23.2 points. Using the contrasting groups method, we established a 21/25-point pass/fail level. The Generalizability coefficient was 0.91, and 75% of the score variance was attributable to participant performance, indicating a high level of assessment reliability. Subsequent D studies revealed that two raters rating one performance or one rater rating two performances were sufficiently reliable for high-stakes assessment. CONCLUSION: Validity evidence supports using a low-cost, 3-D-printed model for mastoidectomy training. The model can be printed in-house using consumer-grade 3-D printers and serves as an additional training tool in the temporal bone curriculum. For competency-based training, we established a cut-off score of 21 of 25 WS points using the contrasting groups method.