Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
J Am Chem Soc ; 146(20): 14058-14066, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38733559

RESUMEN

Metal-organic framework (MOF) membranes with high ion selectivity are highly desirable for direct lithium-ion (Li+) separation from industrial brines. However, very few MOF membranes can efficiently separate Li+ from brines of high Mg2+/Li+ concentration ratios and keep stable in ultrahigh Mg2+-concentrated brines. This work reports a type of MOF-channel membranes (MOFCMs) by growing UiO-66-(SH)2 into the nanochannels of polymer substrates to improve the efficiency of MOF membranes for challenging Li+ extraction. The resulting membranes demonstrate excellent monovalent metal ion selectivity over divalent metal ions, with Li+/Mg2+ selectivity up to 103 since Mg2+ should overcome a higher energy barrier than Li+ when transported through the MOF pores, as confirmed by molecular dynamics simulations. Under dual-ion diffusion, as the Mg2+/Li+ mole ratio of the feed solution increases from 0.2 to 30, the membrane Li+/Mg2+ selectivity decreases from 1516 to 19, corresponding to the purity of lithium products between 99.9 and 95.0%. Further research on multi-ion diffusion that involves Mg2+ and three monovalent metal ions (K+, Na+, and Li+, referred to as M+) in the feed solutions shows a significant improvement in Li+/Mg2+ separation efficiency. The Li+/Mg2+ selectivity can go up to 1114 when the Mg2+/M+ molar concentration ratio is 1:1, and it remains at 19 when the ratio is 30:1. The membrane selectivity is also stable for 30 days in a highly concentrated solution with a high Mg2+/Li+ concentration ratio. These results indicate the feasibility of the MOFCMs for direct lithium extraction from brines with Mg2+ concentrations up to 3.5 M. This study provides an alternative strategy for designing efficient MOF membranes in extracting valuable minerals in the future.

2.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34493651

RESUMEN

Lithium is widely used in contemporary energy applications, but its isolation from natural reserves is plagued by time-consuming and costly processes. While polymer membranes could, in principle, circumvent these challenges by efficiently extracting lithium from aqueous solutions, they usually exhibit poor ion-specific selectivity. Toward this end, we have incorporated host-guest interactions into a tunable polynorbornene network by copolymerizing 1) 12-crown-4 ligands to impart ion selectivity, 2) poly(ethylene oxide) side chains to control water content, and 3) a crosslinker to form robust solids at room temperature. Single salt transport measurements indicate these materials exhibit unprecedented reverse permeability selectivity (∼2.3) for LiCl over NaCl-the highest documented to date for a dense, water-swollen polymer. As demonstrated by molecular dynamics simulations, this behavior originates from the ability of 12-crown-4 to bind Na+ ions more strongly than Li+ in an aqueous environment, which reduces Na+ mobility (relative to Li+) and offsets the increase in Na+ solubility due to binding with crown ethers. Under mixed salt conditions, 12-crown-4 functionalized membranes showed identical solubility selectivity relative to single salt conditions; however, the permeability and diffusivity selectivity of LiCl over NaCl decreased, presumably due to flux coupling. These results reveal insights for designing advanced membranes with solute-specific selectivity by utilizing host-guest interactions.

3.
Phys Chem Chem Phys ; 25(21): 14700-14710, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-36806848

RESUMEN

Minimal understanding of the formation mechanism and structure of polydopamine (pDA) and its natural analogue, eumelanin, impedes the practical application of these versatile polymers and limits our knowledge of the origin of melanoma. The lack of conclusive structural evidence stems from the insolubility of these materials, which has spawned significantly diverse suggestions of pDA's structure in the literature. We discovered that pDA is soluble in certain ionic liquids. Using these ionic liquids (ILs) as solvents, we present an experimental methodology to solvate pDA, enabling us to identify pDA's chemical structure. The resolved pDA structure consists of self-assembled supramolecular aggregates that contribute to the increasing complexity of the polymer. The underlying molecular energetics of pDA solvation and a macroscopic picture of the disruption of the aggregates using IL solvents have been investigated, along with studies of the aggregation mechanism in water.

4.
J Am Chem Soc ; 143(48): 20403-20410, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34812619

RESUMEN

Reported herein are two functionalized crown ether strapped calix[4]pyrroles, H1 and H2. As inferred from competitive salt binding experiments carried out in nitrobenzene-d5 and acetonitrile-d3, these hosts capture LiCl selectively over four other test salts, viz. NaCl, KCl, MgCl2, and CaCl2. Support for the selectivity came from density functional theory (DFT) calculations carried out in a solvent continuum. These theoretical analyses revealed a higher innate affinity for LiCl in the case of H1, but a greater selectivity relative to NaCl in the case of H2, recapitulating that observed experimentally. Receptors H1 and H2 were outfitted with methacrylate handles and subject to copolymerization with acrylate monomers and cross-linkers to yield gels, G1 and G2, respectively. These two gels were found to adsorb lithium chloride preferentially from an acetonitrile solution containing a mixture of LiCl, NaCl, KCl, MgCl2, and CaCl2 and then release the lithium chloride in methanol. The gels could then be recycled for reuse in the selective adsorption of LiCl. As such, the present study highlights the use of solvent polarity switching to drive separations with potential applications in lithium purification and recycling.

5.
J Comput Chem ; 42(4): 248-260, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33231872

RESUMEN

We present an inexpensive and robust theoretical approach based on the fragment molecular orbital methodology and the spin-ratio scaled second-order Møller-Plesset perturbation theory to predict the lattice energy of benzene crystals within 2 kJ⋅mol-1 . Inspired by the Harrison method to estimate the Madelung constant, the proposed approach calculates the lattice energy as a sum of two- and three-body interaction energies between a reference molecule and the surrounding molecules arranged in a sphere. The lattice energy converges rapidly at a radius of 13 Å. Adding the corrections to account for a higher correlated level of theory and basis set superposition for the Hartree Fock (HF) level produced a lattice energy of -57.5 kJ⋅mol-1 for the benzene crystal structure at 138 K. This estimate is within 1.6 kJ⋅mol-1 off the best theoretical prediction of -55.9 kJ⋅mol-1 . We applied this approach to calculate lattice energies of the crystal structures of phase I and phase II-polymorphs of benzene-observed at a higher temperature of 295 K. The stability of these polymorphs was correctly predicted, with phase II being energetically preferred by 3.7 kJ⋅mol-1 over phase I. The proposed approach gives a tremendous potential to predict stability of other molecular crystal polymorphs.

6.
Nat Mater ; 19(7): 767-774, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32152561

RESUMEN

Biological ion channels have remarkable ion selectivity, permeability and rectification properties, but it is challenging to develop artificial analogues. Here, we report a metal-organic framework-based subnanochannel (MOFSNC) with heterogeneous structure and surface chemistry to achieve these properties. The asymmetrically structured MOFSNC can rapidly conduct K+, Na+ and Li+ in the subnanometre-to-nanometre channel direction, with conductivities up to three orders of magnitude higher than those of Ca2+ and Mg2+, equivalent to a mono/divalent ion selectivity of 103. Moreover, by varying the pH from 3 to 8 the ion selectivity can be tuned further by a factor of 102 to 104. Theoretical simulations indicate that ion-carboxyl interactions substantially reduce the energy barrier for monovalent cations to pass through the MOFSNC, and thus lead to ultrahigh ion selectivity. These findings suggest ways to develop ion selective devices for efficient ion separation, energy reservation and power generation.


Asunto(s)
Estructuras Metalorgánicas , Metales/química , Nanoestructuras/química , Cationes Monovalentes , Conductividad Eléctrica , Humanos
7.
Nano Lett ; 20(7): 4754-4760, 2020 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-32469531

RESUMEN

Nanotube membranes could show significantly enhanced permeance and selectivity for gas separations. Up until now, studies have primarily focused on applying carbon nanotubes to membranes to achieve ultrafast mass transport. Here, we report the first preparation of silicon nanotube (SiNT) membranes via a template-assisted method and investigate the gas transport behavior through these SiNT membranes using single- and mixed-gas permeation experiments. The SiNT membranes consist of conical cylinder-shaped nanotubes vertically aligned on a porous silicon wafer substrate. The diameter of the SiNT pore mouths are 10 and 30 nm, and the average inner diameter of the tube body is 80 nm. Interestingly, among the gases tested, we found an unprecedentedly low CO2 permeance through the SiNT membranes in single-gas permeation experiments, exceeding the theoretical Knudsen selectivity toward small gases/CO2 separation. This behavior was caused by the reduction of CO2 permeability through the blocking effect of CO2 adsorbed in the narrow pore channels of the SiNT cone regions, indicating that CO2 molecules have a high affinity to the native silicon oxide layer (∼2 nm) that is formed on the inner walls of SiNTs. SiNT membranes also exhibited enhanced gas permeance and water flux as compared to classic theoretical models and, as such, may prove useful as a new type of nanotube material for use in membrane applications.

9.
Angew Chem Int Ed Engl ; 56(17): 4662-4711, 2017 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-27604844

RESUMEN

Polymeric membranes are an energy-efficient means of purifying water, but they suffer from fouling during filtration. Modification of the membrane surface is one route to mitigating membrane fouling, as it helps to maintain high levels of water productivity. Here, a series of common techniques for modification of the membrane surface are reviewed, including surface coating, grafting, and various treatment techniques such as chemical treatment, UV irradiation, and plasma treatment. Historical background on membrane development and surface modification is also provided. Finally, polydopamine, an emerging material that can be easily deposited onto a wide variety of substrates, is discussed within the context of membrane modification. A brief summary of the chemistry of polydopamine, particularly as it may pertain to membrane development, is also described.

10.
Phys Chem Chem Phys ; 18(8): 6021-31, 2016 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-26840776

RESUMEN

Equilibrium partitioning of ions between a membrane and a contiguous external solution strongly influences transport properties of polymeric membranes used for water purification and energy generation applications. This study presents a theoretical framework to quantitatively predict ion sorption from aqueous electrolytes (e.g., NaCl, MgCl2) into charged (i.e., ion exchange) polymers. The model was compared with experimental NaCl, MgCl2, and CaCl2 sorption data in commercial cation and anion exchange membranes. Ion sorption in charged polymers was modeled using a thermodynamic approach based on Donnan theory coupled with Manning's counter-ion condensation theory to describe non-ideal behavior of ions in the membrane. Ion activity coefficients in solution were calculated using the Pitzer model. The resulting model, with no adjustable parameters, provides remarkably good agreement with experimental values of membrane mobile salt concentration. The generality of the model was further demonstrated using literature data for ion sorption of various electrolytes in charged polymers, including HCl sorption in Nafion.

11.
Nat Mater ; 18(2): 92-93, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30455449
12.
ACS Macro Lett ; 13(3): 341-347, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38428022

RESUMEN

The influence of the water content on ion and water transport mechanisms in polymer membranes under low to moderate hydration conditions remains poorly understood. In this study, we combine ion and water diffusivity (PFG-NMR) measurements with atomistic molecular dynamics simulations to better understand transport processes in hydrated salt-doped poly(ethylene glycol). Above the water percolation threshold, the experimental and simulated diffusivities are in good agreement with the free volume transport models. At low hydration levels, unlike dry systems, ion diffusion cannot be described by polymer segmental dynamics alone. We rationalize such observations by the interplay between ion-water and ion-polymer solvation of cations and between ion-water and cation-anion interactions for anions. Further, we demonstrate that a two-state model combining ion-water solvation and free volume transport can describe water dynamics across the entire hydration range of interest. Our findings provide a more encompassing analysis of ion and water transport in hydrated polyelectrolytes, specifically in the low hydration regime.

13.
Adv Mater ; : e2402431, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718377

RESUMEN

With over 6 million tons produced annually, thermoplastic elastomers (TPEs) have become ubiquitous in modern society, due to their unique combination of elasticity, toughness, and reprocessability. Nevertheless, industrial TPEs display a tradeoff between softness and strength, along with low upper service temperatures, typically ≤100 °C. This limits their utility, such as in bio-interfacial applications where supersoft deformation is required in tandem with strength, in addition to applications that require thermal stability (e.g., encapsulation of electronics, seals/joints for aeronautics, protective clothing for firefighting, and biomedical devices that can be subjected to steam sterilization). Thus, combining softness, strength, and high thermal resistance into a single versatile TPE has remained an unmet opportunity. Through de novo design and synthesis of novel norbornene-based ABA triblock copolymers, this gap is filled. Ring-opening metathesis polymerization is employed to prepare TPEs with an unprecedented combination of properties, including skin-like moduli (<100 kPa), strength competitive with commercial TPEs (>5 MPa), and upper service temperatures akin to high-performance plastics (≈260 °C). Furthermore, the materials are elastic, tough, reprocessable, and shelf stable (≥2 months) without incorporation of plasticizer. Structure-property relationships identified herein inform development of next-generation TPEs that are both biologically soft yet thermomechanically durable.

14.
J Phys Chem B ; 127(8): 1842-1855, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36795084

RESUMEN

Ion exchange membranes (IEMs) are frequently used in water treatment and electrochemical applications, with their ion separation properties largely governed by equilibrium ion partitioning between a membrane and contiguous solution. Despite an expansive literature on IEMs, the influence of electrolyte association (i.e., ion pairing) on ion sorption remains relatively unexplored. In this study, salt sorption in two commercial cation exchange membranes equilibrated with 0.01-1.0 M MgSO4 and Na2SO4 is investigated experimentally and theoretically. Association measurements of salt solutions using conductometric experiments and the Stokes-Einstein approximation show significant concentrations of ion pairs in MgSO4 and Na2SO4 relative to those in simple electrolytes (i.e., NaCl), which is consistent with prior studies of sulfate salts. The Manning/Donnan model, developed and validated for halide salts in previous studies, substantially underpredicts sulfate sorption measurements, presumably due to ion pairing effects not accounted for in this established theory. These findings suggest that ion pairing can enhance salt sorption in IEMs due to partitioning of reduced valence species. By reformulating the Donnan and Manning models, a theoretical framework for predicting salt sorption in IEMs that explicitly considers electrolyte association is developed. Remarkably, theoretical predictions of sulfate sorption are improved by over an order of magnitude by accounting for ion speciation. In some cases, good quantitative agreement is observed between theoretical and experimental values for external salt concentrations between 0.1 and 1.0 M using no adjustable parameters.

15.
Sci Adv ; 9(4): eabq1369, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36706186

RESUMEN

Single-ion selectivity with high precision has long been pursued for fundamental bioinspired engineering and applications such as in ion separation and energy conversion. However, it remains a challenge to develop artificial ion channels to achieve single-ion selectivity comparable to their biological analogs, especially for high Na+/K+ selectivity. Here, we report an artificial sodium channel by subnanoconfinement of 4'-aminobenzo-15-crown-5 ethers (15C5s) into ~6-Å-sized metal-organic framework subnanochannel (MOFSNC). The resulting 15C5-MOFSNC shows an unprecedented Na+/K+ selectivity of tens to 102 and Na+/Li+ selectivity of 103 under multicomponent permeation conditions, comparable to biological sodium channels. A co-ion-responsive single-file transport mechanism in 15C-MOFSNC is proposed for the preferential transport of Na+ over K+ due to the synergetic effects of size exclusion, charge selectivity, local hydrophobicity, and preferential binding with functional groups. This study provides an alternative strategy for developing potential single-ion selective channels and membranes for many applications.

16.
Adv Mater ; 35(9): e2210208, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36515127

RESUMEN

Access to multimaterial polymers with spatially localized properties and robust interfaces is anticipated to enable new capabilities in soft robotics, such as smooth actuation for advanced medical and manufacturing technologies. Here, orthogonal initiation is used to create interpenetrating polymer networks (IPNs) with spatial control over morphology and mechanical properties. Base catalyzes the formation of a stiff and strong polyurethane, while blue LEDs initiate the formation of a soft and elastic polyacrylate. IPN morphology is controlled by when the LED is turned "on", with large phase separation occurring for short time delays (≈1-2 min) and a mixed morphology for longer time delays (>5 min), which is supported by dynamic mechanical analysis, small angle X-ray scattering, and atomic force microscopy. Through tailoring morphology, tensile moduli and fracture toughness can be tuned across ≈1-2 orders of magnitude. Moreover, a simple spring model is used to explain the observed mechanical behavior. Photopatterning produces "multimorphic" materials, where morphology is spatially localized with fine precision (<100 µm), while maintaining a uniform chemical composition throughout to mitigate interfacial failure. As a final demonstration, the fabrication of hinges represents a possible use case for multimorphic materials in soft robotics.

17.
Nat Commun ; 14(1): 286, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36653373

RESUMEN

Controllable fabrication of angstrom-size channels has been long desired to mimic biological ion channels for the fundamental study of ion transport. Here we report a strategy for fabricating angstrom-scale ion channels with one-dimensional (1D) to three-dimensional (3D) pore structures by the growth of metal-organic frameworks (MOFs) into nanochannels. The 1D MIL-53 channels of flexible pore sizes around 5.2 × 8.9 Å can transport cations rapidly, with one to two orders of magnitude higher conductivities and mobilities than MOF channels of hybrid pore configurations and sizes, including Al-TCPP with 1D ~8 Å channels connected by 2D ~6 Å interlayers, and 3D UiO-66 channels of ~6 Å windows and 9 - 12 Å cavities. Furthermore, the 3D MOF channels exhibit better ion sieving properties than those of 1D and 2D MOF channels. Theoretical simulations reveal that ion transport through 2D and 3D MOF channels should undergo multiple dehydration-rehydration processes, resulting in higher energy barriers than pure 1D channels. These findings offer a platform for studying ion transport properties at angstrom-scale confinement and provide guidelines for improving the efficiency of ionic separations and nanofluidics.

18.
Langmuir ; 28(15): 6428-35, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22475082

RESUMEN

Herein we propose a new structure for poly(dopamine), a synthetic eumelanin that has found broad utility as an antifouling agent. Commercially available 3-hydroxytyramine hydrochloride (dopamine HCl) was polymerized under aerobic, aqueous conditions using tris(hydroxymethyl)aminomethane (TRIS) as a basic polymerization initiator, affording a darkly colored powder product upon isolation. The polymer was analyzed using a variety of solid state spectroscopic and crystallographic techniques. Collectively, the data showed that in contrast to previously proposed models, poly(dopamine) is not a covalent polymer but instead a supramolecular aggregate of monomers (consisting primarily of 5,6-dihydroxyindoline and its dione derivative) that are held together through a combination of charge transfer, π-stacking, and hydrogen bonding interactions.


Asunto(s)
Indoles/química , Polímeros/química , Productos Biológicos/química , Espectroscopía de Resonancia Magnética , Melaninas/química , Espectroscopía Infrarroja por Transformada de Fourier
19.
Membranes (Basel) ; 12(2)2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35207122

RESUMEN

Mixed-matrix membranes (MMMs) consisting of an ortho-hydroxy polyamide (HPA) matrix, and variable loads of a porous polymer network (PPN) were thermally treated to induce the transformation of HPA to polybenzoxazole (ß-TR-PBO). Two different HPAs were synthesized to be used as a matrix, 6FCl-APAF and tBTpCl-APAF, while the PPN used as a filler was prepared by reacting triptycene and trifluoroacetophenone. The permeability of He, H2, N2, O2, CH4 and CO2 gases through these MMMs are analyzed as a function of the fraction of free volume (FFV) of the membrane and the kinetic diameter of the gas, allowing for the evaluation of the free volume. Thermal rearrangement entails an increase in the FFV. Both before and after thermal rearrangement, the free volume increases with the PPN content very similarly for both polymeric matrices. It is shown that there is a portion of free volume that is inaccessible to permeation (occluded volume), probably due to it being trapped within the filler. In fact, permeability and selectivity change below what could be expected according to densities, when the fraction of occluded volume increases. A higher filler load increases the percentage of inaccessible or trapped free volume, probably due to the increasing agglomeration of the filler. On the other hand, the phenomenon is slightly affected by thermal rearrangement. The fraction of trapped free volume seems to be lower for membranes in which the tBTpCl-APAF is used as a matrix than for those with a 6FCl-APAF matrix, possibly because tBTpCl-APAF could approach the PPN better. The application of an effective medium theory for permeability allowed us to extrapolate for a 100% filler, giving the same value for both thermally rearranged and non-rearranged MMMs. The pure filler could also be extrapolated by assuming the same tendency as in the Robeson's plots for MMMs with low filler content.

20.
Nat Commun ; 13(1): 5880, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-36202843

RESUMEN

Selective transport of solutes across a membrane is critical for many biological, water treatment and energy conversion and storage systems. When a charged membrane is equilibrated with an electrolyte, an unequal distribution of ions arises between phases, generating the so-called Donnan electrical potential at the solution/membrane interface. The Donnan potential results in the partial exclusion of co-ion, providing the basis of permselectivity. Although there are well-established ways to indirectly estimate the Donnan potential, it has been widely reported that it cannot be measured directly. Here we report the first direct measurement of the Donnan potential of an ion exchange membrane equilibrated with salt solutions. Our results highlight the dependence of the Donnan potential on external salt concentration and counter-ion valence, and show a reasonable agreement with current theoretical models of IEMs, which incorporate ion activity coefficients. By directly measuring the Donnan potential, we eliminate ambiguities that arise from limitations inherent in current models.


Asunto(s)
Electrólitos , Modelos Teóricos , Intercambio Iónico , Iones , Soluciones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA