Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
Nature ; 601(7894): 542-548, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35082418

RESUMEN

Obtaining a burning plasma is a critical step towards self-sustaining fusion energy1. A burning plasma is one in which the fusion reactions themselves are the primary source of heating in the plasma, which is necessary to sustain and propagate the burn, enabling high energy gain. After decades of fusion research, here we achieve a burning-plasma state in the laboratory. These experiments were conducted at the US National Ignition Facility, a laser facility delivering up to 1.9 megajoules of energy in pulses with peak powers up to 500 terawatts. We use the lasers to generate X-rays in a radiation cavity to indirectly drive a fuel-containing capsule via the X-ray ablation pressure, which results in the implosion process compressing and heating the fuel via mechanical work. The burning-plasma state was created using a strategy to increase the spatial scale of the capsule2,3 through two different implosion concepts4-7. These experiments show fusion self-heating in excess of the mechanical work injected into the implosions, satisfying several burning-plasma metrics3,8. Additionally, we describe a subset of experiments that appear to have crossed the static self-heating boundary, where fusion heating surpasses the energy losses from radiation and conduction. These results provide an opportunity to study α-particle-dominated plasmas and burning-plasma physics in the laboratory.

3.
Phys Rev Lett ; 128(19): 195002, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35622051

RESUMEN

This Letter presents the first observation on how a strong, 500 kG, externally applied B field increases the mode-two asymmetry in shock-heated inertial fusion implosions. Using a direct-drive implosion with polar illumination and imposed field, we observed that magnetization produces a significant increase in the implosion oblateness (a 2.5× larger P2 amplitude in x-ray self-emission images) compared with reference experiments with identical drive but with no field applied. The implosions produce strongly magnetized electrons (ω_{e}τ_{e}≫1) and ions (ω_{i}τ_{i}>1) that, as shown using simulations, restrict the cross field heat flow necessary for lateral distribution of the laser and shock heating from the implosion pole to the waist, causing the enhanced mode-two shape.

4.
Phys Rev Lett ; 122(1): 015002, 2019 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-31012651

RESUMEN

We report on the first accurate validation of low-Z ion-stopping formalisms in the regime ranging from low-velocity ion stopping-through the Bragg peak-to high-velocity ion stopping in well-characterized high-energy-density plasmas. These measurements were executed at electron temperatures and number densities in the range of 1.4-2.8 keV and 4×10^{23}-8×10^{23} cm^{-3}, respectively. For these conditions, it is experimentally demonstrated that the Brown-Preston-Singleton formalism provides a better description of the ion stopping than other formalisms around the Bragg peak, except for the ion stopping at v_{i}∼0.3v_{th}, where the Brown-Preston-Singleton formalism significantly underpredicts the observation. It is postulated that the inclusion of nuclear-elastic scattering, and possibly coupled modes of the plasma ions, in the modeling of the ion-ion interaction may explain the discrepancy of ∼20% at this velocity, which would have an impact on our understanding of the alpha energy deposition and heating of the fuel ions, and thus reduce the ignition threshold in an ignition experiment.

5.
Phys Rev Lett ; 123(5): 055002, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31491329

RESUMEN

Collisionless shocks are ubiquitous in the Universe as a consequence of supersonic plasma flows sweeping through interstellar and intergalactic media. These shocks are the cause of many observed astrophysical phenomena, but details of shock structure and behavior remain controversial because of the lack of ways to study them experimentally. Laboratory experiments reported here, with astrophysically relevant plasma parameters, demonstrate for the first time the formation of a quasiperpendicular magnetized collisionless shock. In the upstream it is fringed by a filamented turbulent region, a rudiment for a secondary Weibel-driven shock. This turbulent structure is found responsible for electron acceleration to energies exceeding the average energy by two orders of magnitude.

6.
Phys Rev Lett ; 122(3): 035001, 2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30735406

RESUMEN

Fuel-ion species dynamics in hydrodynamiclike shock-driven DT^{3}He-filled inertial confinement fusion implosion is quantitatively assessed for the first time using simultaneously measured D^{3}He and DT reaction histories. These reaction histories are measured with the particle x-ray temporal diagnostic, which captures the relative timing between different nuclear burns with unprecedented precision (∼10 ps). The observed 50±10 ps earlier D^{3}He reaction history timing (relative to DT) cannot be explained by average-ion hydrodynamic simulations and is attributed to fuel-ion species separation between the D, T, and ^{3}He ions during shock convergence and rebound. At the onset of the shock burn, inferred ^{3}He/T fuel ratio in the burn region using the measured reaction histories is much higher as compared to the initial gas-filled ratio. As T and ^{3}He have the same mass but different charge, these results indicate that the charge-to-mass ratio plays an important role in driving fuel-ion species separation during strong shock propagation even for these hydrodynamiclike plasmas.

7.
Phys Rev Lett ; 121(4): 042501, 2018 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-30095940

RESUMEN

Full calculations of six-nucleon reactions with a three-body final state have been elusive and a long-standing issue. We present neutron spectra from the T(t,2n)α (TT) reaction measured in inertial confinement fusion experiments at the OMEGA laser facility at ion temperatures from 4 to 18 keV, corresponding to center-of-mass energies (E_{c.m.}) from 16 to 50 keV. A clear difference in the shape of the TT-neutron spectrum is observed between the two E_{c.m.}, with the ^{5}He ground state resonant peak at 8.6 MeV being significantly stronger at the higher than at the lower energy. The data provide the first conclusive evidence of a variant TT-neutron spectrum in this E_{c.m.} range. In contrast to earlier available data, this indicates a reaction mechanism that must involve resonances and/or higher angular momenta than L=0. This finding provides an important experimental constraint on theoretical efforts that explore this and complementary six-nucleon systems, such as the solar ^{3}He(^{3}He,2p)α reaction.

8.
Phys Rev Lett ; 119(22): 222701, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29286782

RESUMEN

Few-body nuclear physics often relies upon phenomenological models, with new efforts at the ab initio theory reported recently; both need high-quality benchmark data, particularly at low center-of-mass energies. We use high-energy-density plasmas to measure the proton spectra from ^{3}He+T and ^{3}He+^{3}He fusion. The data disagree with R-matrix predictions constrained by neutron spectra from T+T fusion. We present a new analysis of the ^{3}He+^{3}He proton spectrum; these benchmarked spectral shapes should be used for interpreting low-resolution data, such as solar fusion cross-section measurements.

9.
Phys Rev Lett ; 117(3): 035002, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-27472118

RESUMEN

Light nuclei were created during big-bang nucleosynthesis (BBN). Standard BBN theory, using rates inferred from accelerator-beam data, cannot explain high levels of ^{6}Li in low-metallicity stars. Using high-energy-density plasmas we measure the T(^{3}He,γ)^{6}Li reaction rate, a candidate for anomalously high ^{6}Li production; we find that the rate is too low to explain the observations, and different than values used in common BBN models. This is the first data directly relevant to BBN, and also the first use of laboratory plasmas, at comparable conditions to astrophysical systems, to address a problem in nuclear astrophysics.

11.
Phys Rev Lett ; 117(2): 025001, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27447511

RESUMEN

A record fuel hot-spot pressure P_{hs}=56±7 Gbar was inferred from x-ray and nuclear diagnostics for direct-drive inertial confinement fusion cryogenic, layered deuterium-tritium implosions on the 60-beam, 30-kJ, 351-nm OMEGA Laser System. When hydrodynamically scaled to the energy of the National Ignition Facility, these implosions achieved a Lawson parameter ∼60% of the value required for ignition [A. Bose et al., Phys. Rev. E 93, 011201(R) (2016)], similar to indirect-drive implosions [R. Betti et al., Phys. Rev. Lett. 114, 255003 (2015)], and nearly half of the direct-drive ignition-threshold pressure. Relative to symmetric, one-dimensional simulations, the inferred hot-spot pressure is approximately 40% lower. Three-dimensional simulations suggest that low-mode distortion of the hot spot seeded by laser-drive nonuniformity and target-positioning error reduces target performance.

12.
Phys Rev Lett ; 114(20): 205004, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26047236

RESUMEN

An evolution of magnetic reconnection behavior, from fast jets to the slowing of reconnection and the establishment of a stable current sheet, has been observed in strongly driven, ß≲20 laser-produced plasma experiments. This process has been inferred to occur alongside a slowing of plasma inflows carrying the oppositely directed magnetic fields as well as the evolution of plasma conditions from collisionless to collisional. High-resolution proton radiography has revealed unprecedented detail of the forced interaction of magnetic fields and super-Alfvénic electron jets (V_{jet}∼20V_{A}) ejected from the reconnection region, indicating that two-fluid or collisionless magnetic reconnection occurs early in time. The absence of jets and the persistence of strong, stable magnetic fields at late times indicates that the reconnection process slows down, while plasma flows stagnate and plasma conditions evolve to a cooler, denser, more collisional state. These results demonstrate that powerful initial plasma flows are not sufficient to force a complete reconnection of magnetic fields, even in the strongly driven regime.

13.
Phys Rev Lett ; 115(20): 205001, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26613448

RESUMEN

For the first time, quantitative measurements of ion stopping at energies around the Bragg peak (or peak ion stopping, which occurs at an ion velocity comparable to the average thermal electron velocity), and its dependence on electron temperature (T(e)) and electron number density (n(e)) in the range of 0.5-4.0 keV and 3×10(22) to 3×10(23) cm(-3) have been conducted, respectively. It is experimentally demonstrated that the position and amplitude of the Bragg peak varies strongly with T(e) with n(e). The importance of including quantum diffraction is also demonstrated in the stopping-power modeling of high-energy-density plasmas.

14.
Phys Rev Lett ; 114(20): 205002, 2015 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-26047234

RESUMEN

The ablator couples energy between the driver and fusion fuel in inertial confinement fusion (ICF). Because of its low opacity, high solid density, and material properties, beryllium has long been considered an ideal ablator for ICF ignition experiments at the National Ignition Facility. We report here the first indirect drive Be implosions driven with shaped laser pulses and diagnosed with fusion yield at the OMEGA laser. The results show good performance with an average DD neutron yield of ∼2×10^{9} at a convergence ratio of R_{0}/R∼10 and little impact due to the growth of hydrodynamic instabilities and mix. In addition, the effect of adding an inner liner of W between the Be and DD is demonstrated.

15.
Phys Rev Lett ; 114(21): 215002, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-26066441

RESUMEN

We measured the stopping of energetic protons in an isochorically heated solid-density Be plasma with an electron temperature of ∼32 eV, corresponding to moderately coupled [(e^{2}/a)/(k_{B}T_{e}+E_{F})∼0.3] and moderately degenerate [k_{B}T_{e}/E_{F}∼2] "warm-dense matter" (WDM) conditions. We present the first high-accuracy measurements of charged-particle energy loss through dense plasma, which shows an increased loss relative to cold matter, consistent with a reduced mean ionization potential. The data agree with stopping models based on an ad hoc treatment of free and bound electrons, as well as the average-atom local-density approximation; this work is the first test of these theories in WDM plasma.

16.
Phys Rev Lett ; 114(2): 025001, 2015 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-25635549

RESUMEN

Anomalous reduction of the fusion yields by 50% and anomalous scaling of the burn-averaged ion temperatures with the ion-species fraction has been observed for the first time in D^{3}He-filled shock-driven inertial confinement fusion implosions. Two ion kinetic mechanisms are used to explain the anomalous observations: thermal decoupling of the D and ^{3}He populations and diffusive species separation. The observed insensitivity of ion temperature to a varying deuterium fraction is shown to be a signature of ion thermal decoupling in shock-heated plasmas. The burn-averaged deuterium fraction calculated from the experimental data demonstrates a reduction in the average core deuterium density, as predicted by simulations that use a diffusion model. Accounting for each of these effects in simulations reproduces the observed yield trends.

17.
Phys Rev Lett ; 115(10): 105001, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26382681

RESUMEN

Hydrodynamic instabilities can cause capsule defects and other perturbations to grow and degrade implosion performance in ignition experiments at the National Ignition Facility (NIF). Here, we show the first experimental demonstration that a strong unsupported first shock in indirect drive implosions at the NIF reduces ablation front instability growth leading to a 3 to 10 times higher yield with fuel ρR>1 g/cm(2). This work shows the importance of ablation front instability growth during the National Ignition Campaign and may provide a path to improved performance at the high compression necessary for ignition.

18.
Phys Rev Lett ; 115(5): 055001, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26274424

RESUMEN

We report on the first layered deuterium-tritium (DT) capsule implosions indirectly driven by a "high-foot" laser pulse that were fielded in depleted uranium hohlraums at the National Ignition Facility. Recently, high-foot implosions have demonstrated improved resistance to ablation-front Rayleigh-Taylor instability induced mixing of ablator material into the DT hot spot [Hurricane et al., Nature (London) 506, 343 (2014)]. Uranium hohlraums provide a higher albedo and thus an increased drive equivalent to an additional 25 TW laser power at the peak of the drive compared to standard gold hohlraums leading to higher implosion velocity. Additionally, we observe an improved hot-spot shape closer to round which indicates enhanced drive from the waist. In contrast to findings in the National Ignition Campaign, now all of our highest performing experiments have been done in uranium hohlraums and achieved total yields approaching 10^{16} neutrons where more than 50% of the yield was due to additional heating of alpha particles stopping in the DT fuel.

19.
Phys Rev Lett ; 114(14): 145004, 2015 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-25910132

RESUMEN

Experiments have recently been conducted at the National Ignition Facility utilizing inertial confinement fusion capsule ablators that are 175 and 165 µm in thickness, 10% and 15% thinner, respectively, than the nominal thickness capsule used throughout the high foot and most of the National Ignition Campaign. These three-shock, high-adiabat, high-foot implosions have demonstrated good performance, with higher velocity and better symmetry control at lower laser powers and energies than their nominal thickness ablator counterparts. Little to no hydrodynamic mix into the DT hot spot has been observed despite the higher velocities and reduced depth for possible instability feedthrough. Early results have shown good repeatability, with up to 1/2 the neutron yield coming from α-particle self-heating.

20.
Phys Rev Lett ; 112(22): 225002, 2014 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-24949774

RESUMEN

A 200 µm radius hot spot at more than 2 keV temperature, 1 g/cm^{3} density has been achieved on the National Ignition Facility using a near vacuum hohlraum. The implosion exhibits ideal one-dimensional behavior and 99% laser-to-hohlraum coupling. The low opacity of the remaining shell at bang time allows for a measurement of the x-ray emission of the reflected central shock in a deuterium plasma. Comparison with 1D hydrodynamic simulations puts constraints on electron-ion collisions and heat conduction. Results are consistent with classical (Spitzer-Harm) heat flux.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA