Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 166(6): 1445-1458.e12, 2016 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-27610569

RESUMEN

A vaccine that elicits broadly neutralizing antibodies (bNAbs) against HIV-1 is likely to be protective, but this has not been achieved. To explore immunization regimens that might elicit bNAbs, we produced and immunized mice expressing the predicted germline PGT121, a bNAb specific for the V3-loop and surrounding glycans on the HIV-1 spike. Priming with an epitope-modified immunogen designed to activate germline antibody-expressing B cells, followed by ELISA-guided boosting with a sequence of directional immunogens, native-like trimers with decreasing epitope modification, elicited heterologous tier-2-neutralizing responses. In contrast, repeated immunization with the priming immunogen did not. Antibody cloning confirmed elicitation of high levels of somatic mutation and tier-2-neutralizing antibodies resembling the authentic human bNAb. Our data establish that sequential immunization with specifically designed immunogens can induce high levels of somatic mutation and shepherd antibody maturation to produce bNAbs from their inferred germline precursors.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/administración & dosificación , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Inmunización , Inmunoglobulinas/genética , Secuencia de Aminoácidos , Animales , Antígenos Virales/genética , Antígenos Virales/inmunología , Linfocitos B/inmunología , Clonación Molecular , Cartilla de ADN/química , Epítopos/inmunología , Técnicas de Sustitución del Gen , Infecciones por VIH/inmunología , Ratones , Mutación , Alineación de Secuencia
2.
Cell ; 161(7): 1505-15, 2015 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-26091035

RESUMEN

A subset of individuals infected with HIV-1 develops broadly neutralizing antibodies (bNAbs) that can prevent infection, but it has not yet been possible to elicit these antibodies by immunization. To systematically explore how immunization might be tailored to produce them, we generated mice expressing the predicted germline or mature heavy chains of a potent bNAb to the CD4 binding site (CD4bs) on the HIV-1 envelope glycoprotein (Env). Immunogens specifically designed to activate B cells bearing germline antibodies are required to initiate immune responses, but they do not elicit bNAbs. In contrast, native-like Env trimers fail to activate B cells expressing germline antibodies but elicit bNAbs by selecting for a restricted group of light chains bearing specific somatic mutations that enhance neutralizing activity. The data suggest that vaccination to elicit anti-HIV-1 antibodies will require immunization with a succession of related immunogens.


Asunto(s)
Anticuerpos Neutralizantes/genética , Anticuerpos Antivirales/genética , Técnicas de Sustitución del Gen , VIH-1/inmunología , Cadenas Pesadas de Inmunoglobulina/genética , Animales , Antígenos Virales , Linfocitos B/inmunología , Antígenos CD4/metabolismo , Infecciones por VIH/inmunología , Humanos , Ratones , Mutación , Bazo/citología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
3.
Immunity ; 45(3): 483-496, 2016 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-27617678

RESUMEN

Broadly neutralizing antibodies (bnAbs) against the N332 supersite of the HIV envelope (Env) trimer are the most common bnAbs induced during infection, making them promising leads for vaccine design. Wild-type Env glycoproteins lack detectable affinity for supersite-bnAb germline precursors and are therefore unsuitable immunogens to prime supersite-bnAb responses. We employed mammalian cell surface display to design stabilized Env trimers with affinity for germline-reverted precursors of PGT121-class supersite bnAbs. The trimers maintained native-like antigenicity and structure, activated PGT121 inferred-germline B cells ex vivo when multimerized on liposomes, and primed PGT121-like responses in PGT121 inferred-germline knockin mice. Design intermediates have levels of epitope modification between wild-type and germline-targeting trimers; their mutation gradient suggests sequential immunization to induce bnAbs, in which the germline-targeting prime is followed by progressively less-mutated design intermediates and, lastly, with native trimers. The vaccine design strategies described could be utilized to target other epitopes on HIV or other pathogens.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Polisacáridos/inmunología , Secuencia de Aminoácidos , Animales , Linfocitos B/inmunología , Epítopos/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Inmunización/métodos , Ratones , Ratones Noqueados , Mutación/inmunología , Alineación de Secuencia , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
4.
J Immunol ; 211(10): 1578-1588, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37782047

RESUMEN

Being able to accurately predict the three-dimensional structure of an Ab can facilitate Ab characterization and epitope prediction, with important diagnostic and clinical implications. In this study, we evaluated the ability of AlphaFold to predict the structures of 222 recently published, high-resolution Fab H and L chain structures of Abs from different species directed against different Ags. We show that although the overall Ab prediction quality is in line with the results of CASP14, regions such as the complementarity-determining regions (CDRs) of the H chain, which are prone to higher variation, are predicted less accurately. Moreover, we discovered that AlphaFold mispredicts the bending angles between the variable and constant domains. To evaluate the ability of AlphaFold to model Ab-Ag interactions based only on sequence, we used AlphaFold-Multimer in combination with ZDOCK to predict the structures of 26 known Ab-Ag complexes. ZDOCK, which was applied on bound components of both the Ab and the Ag, succeeded in assembling 11 complexes, whereas AlphaFold succeeded in predicting only 2 of 26 models, with significant deviations in the docking contacts predicted in the rest of the molecules. Within the 11 complexes that were successfully predicted by ZDOCK, 9 involved short-peptide Ags (18-mer or less), whereas only 2 were complexes of Ab with a full-length protein. Docking of modeled unbound Ab and Ag was unsuccessful. In summary, our study provides important information about the abilities and limitations of using AlphaFold to predict Ab-Ag interactions and suggests areas for possible improvement.


Asunto(s)
Anticuerpos , Regiones Determinantes de Complementariedad , Epítopos , Péptidos/química
5.
Gastroenterology ; 162(2): 454-467, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34717923

RESUMEN

BACKGROUND & AIM: Patients with inflammatory bowel diseases (IBD), specifically those treated with anti-tumor necrosis factor (TNF)α biologics, are at high risk for vaccine-preventable infections. Their ability to mount adequate vaccine responses is unclear. The aim of the study was to assess serologic responses to messenger RNA-Coronavirus Disease 2019 vaccine, and safety profile, in patients with IBD stratified according to therapy, compared with healthy controls (HCs). METHODS: Prospective, controlled, multicenter Israeli study. Subjects enrolled received 2 BNT162b2 (Pfizer/BioNTech) doses. Anti-spike antibody levels and functional activity, anti-TNFα levels and adverse events (AEs) were detected longitudinally. RESULTS: Overall, 258 subjects: 185 IBD (67 treated with anti-TNFα, 118 non-anti-TNFα), and 73 HCs. After the first vaccine dose, all HCs were seropositive, whereas ∼7% of patients with IBD, regardless of treatment, remained seronegative. After the second dose, all subjects were seropositive, however anti-spike levels were significantly lower in anti-TNFα treated compared with non-anti-TNFα treated patients, and HCs (both P < .001). Neutralizing and inhibitory functions were both lower in anti-TNFα treated compared with non-anti-TNFα treated patients, and HCs (P < .03; P < .0001, respectively). Anti-TNFα drug levels and vaccine responses did not affect anti-spike levels. Infection rate (∼2%) and AEs were comparable in all groups. IBD activity was unaffected by BNT162b2. CONCLUSIONS: In this prospective study in patients with IBD stratified according to treatment, all patients mounted serologic response to 2 doses of BNT162b2; however, its magnitude was significantly lower in patients treated with anti-TNFα, regardless of administration timing and drug levels. Vaccine was safe. As vaccine serologic response longevity in this group may be limited, vaccine booster dose should be considered.


Asunto(s)
Vacuna BNT162/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal/efectos de los fármacos , Enfermedades Inflamatorias del Intestino/inmunología , Inhibidores del Factor de Necrosis Tumoral/inmunología , Adulto , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Estudios de Casos y Controles , Femenino , Humanos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Israel , Masculino , Persona de Mediana Edad , Estudios Prospectivos , SARS-CoV-2/inmunología
6.
PLoS Pathog ; 17(2): e1009165, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33571304

RESUMEN

The interactions between antibodies, SARS-CoV-2 and immune cells contribute to the pathogenesis of COVID-19 and protective immunity. To understand the differences between antibody responses in mild versus severe cases of COVID-19, we analyzed the B cell responses in patients 1.5 months post SARS-CoV-2 infection. Severe, and not mild, infection correlated with high titers of IgG against Spike receptor binding domain (RBD) that were capable of ACE2:RBD inhibition. B cell receptor (BCR) sequencing revealed that VH3-53 was enriched during severe infection. Of the 22 antibodies cloned from two severe donors, six exhibited potent neutralization against authentic SARS-CoV-2, and inhibited syncytia formation. Using peptide libraries, competition ELISA and mutagenesis of RBD, we mapped the epitopes of the neutralizing antibodies (nAbs) to three different sites on the Spike. Finally, we used combinations of nAbs targeting different immune-sites to efficiently block SARS-CoV-2 infection. Analysis of 49 healthy BCR repertoires revealed that the nAbs germline VHJH precursors comprise up to 2.7% of all VHJHs. We demonstrate that severe COVID-19 is associated with unique BCR signatures and multi-clonal neutralizing responses that are relatively frequent in the population. Moreover, our data support the use of combination antibody therapy to prevent and treat COVID-19.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , COVID-19 , Convalecencia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Adulto , Anciano , Animales , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/genética , Anticuerpos Antivirales/inmunología , COVID-19/genética , COVID-19/inmunología , Chlorocebus aethiops , Clonación Molecular , Mapeo Epitopo , Epítopos/genética , Epítopos/inmunología , Femenino , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Células Vero
7.
Brain Behav Immun ; 113: 66-82, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37369341

RESUMEN

Stress-induced ß2-adrenergic receptor (ß2AR) activation in B cells increases IgG secretion; however, the impact of this activation on antibody affinity and the underlying mechanisms remains unclear. In the current study, we demonstrate that stress in mice following ovalbumin (OVA) or SARS-CoV-2 RBD immunization significantly increases both serum and surface-expressed IgG binding to the immunogen, while concurrently reducing surface IgG expression and B cell clonal expansion. These effects were abolished by pharmacological ß2AR blocking or when the experiments were conducted in ß2AR -/- mice. In the second part of our study, we used single B cell sorting to characterize the monoclonal antibodies (mAbs) generated following ß2AR activation in cultured RBD-stimulated B cells from convalescent SARS-CoV-2 donors. Ex vivo ß2AR activation increased the affinities of the produced anti-RBD mAbs by 100-fold compared to mAbs produced by the same donor control cultures. Consistent with the mouse experiments, ß2AR activation reduced both surface IgG levels and the frequency of expanded clones. mRNA sequencing revealed a ß2AR-dependent upregulation of the PI3K pathway and B cell receptor (BCR) signaling through AKT phosphorylation, as well as an increased B cell motility. Overall, our study demonstrates that stress-mediated ß2AR activation drives changes in B cells associated with BCR activation and higher affinity antibodies.


Asunto(s)
Adrenérgicos , COVID-19 , Ratones , Animales , Fosfatidilinositol 3-Quinasas , SARS-CoV-2/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Inmunoglobulina G
8.
J Allergy Clin Immunol ; 148(3): 739-749, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34087242

RESUMEN

BACKGROUND: In mid-December 2020, Israel started a nationwide mass vaccination campaign against coronavirus disease 2019 (COVID-19). In the first few weeks, medical personnel, elderly citizens, and patients with chronic diseases were prioritized. As such, patients with primary and secondary immunodeficiencies were encouraged to receive the vaccine. Although the efficacy of RNA-based COVID-19 vaccines has been demonstrated in the general population, little is known about their efficacy and safety in patients with inborn errors of immunity (IEI). OBJECTIVE: Our aim was to evaluate the humoral and cellular immune response to COVID-19 vaccine in a cohort of patients with IEI. METHODS: A total of 26 adult patients were enrolled, and plasma and peripheral blood mononuclear cells were collected from them 2 weeks following the second dose of Pfizer-BioNTech COVID-19 vaccine. Humoral response was evaluated by testing anti-SARS-CoV-2 spike (S) receptor-binding domain and antinucleocapsid antibody titers and evaluating neutralizing ability by inhibition of receptor-binding domain-angiotensin-converting enzyme 2 binding. Cellular immune response was evaluated by using ELISpot, estimating IL-2 and IFN-γ secretion in response to pooled SARS-CoV-2 S- or M-peptides. RESULTS: Our cohort included 18 patients with a predominantly antibody deficiency, 2 with combined immunodeficiency, 3 with immune dysregulation, and 3 with other genetically defined diagnoses. Twenty-two of them were receiving immunoglobulin replacement therapy. Of the 26 patients, 18 developed specific antibody response, and 19 showed S-peptide-specific T-cell response. None of the patients reported significant adverse events. CONCLUSION: Vaccinating patients with IEI is safe, and most patients were able to develop vaccine-specific antibody response, S-protein-specific cellular response, or both.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , Inmunogenicidad Vacunal , Enfermedades de Inmunodeficiencia Primaria/complicaciones , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/etiología , COVID-19/virología , Susceptibilidad a Enfermedades , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunidad Celular , Masculino , Persona de Mediana Edad , Enfermedades de Inmunodeficiencia Primaria/genética , SARS-CoV-2/inmunología , Adulto Joven
9.
Immunol Cell Biol ; 99(8): 796-799, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34355822

RESUMEN

The B-cell response to COVID-19 vaccines in convalescent individuals.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Linfocitos B/inmunología , Vacunas contra la COVID-19 , Humanos , Memoria Inmunológica , Caminata
10.
J Allergy Clin Immunol ; 149(1): 77-78, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34674856
11.
PLoS Pathog ; 11(10): e1005238, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26516768

RESUMEN

The CD4 binding site (CD4bs) on the envelope glycoprotein is a major site of vulnerability that is conserved among different HIV-1 isolates. Many broadly neutralizing antibodies (bNAbs) to the CD4bs belong to the VRC01 class, sharing highly restricted origins, recognition mechanisms and viral escape pathways. We sought to isolate new anti-CD4bs bNAbs with different origins and mechanisms of action. Using a gp120 2CC core as bait, we isolated antibodies encoded by IGVH3-21 and IGVL3-1 genes with long CDRH3s that depend on the presence of the N-linked glycan at position-276 for activity. This binding mode is similar to the previously identified antibody HJ16, however the new antibodies identified herein are more potent and broad. The most potent variant, 179NC75, had a geometric mean IC80 value of 0.42 µg/ml against 120 Tier-2 HIV-1 pseudoviruses in the TZM.bl assay. Although this group of CD4bs glycan-dependent antibodies can be broadly and potently neutralizing in vitro, their in vivo activity has not been tested to date. Here, we report that 179NC75 is highly active when administered to HIV-1-infected humanized mice, where it selects for escape variants that lack a glycan site at position-276. The same glycan was absent from the virus isolated from the 179NC75 donor, implying that the antibody also exerts selection pressure in humans.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Antígenos CD4/inmunología , Anticuerpos Anti-VIH/inmunología , VIH-1/inmunología , Polisacáridos/química , Animales , Sitios de Unión , Células HEK293 , Anticuerpos Anti-VIH/química , Humanos , Ratones
12.
Adv Sci (Weinh) ; 11(40): e2404159, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39116324

RESUMEN

The first approved vaccines for human use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are nanotechnology-based. Although they are modular, rapidly produced, and can reduce disease severity, the currently available vaccines are restricted in preventing infection, stressing the global demand for novel preventive vaccine technologies. Bearing this in mind, we set out to develop a flexible nanovaccine platform for nasal administration to induce mucosal immunity, which is fundamental for optimal protection against respiratory virus infection. The next-generation multiepitope nanovaccines co-deliver immunogenic peptides, selected by an immunoinformatic workflow, along with adjuvants and regulators of the PD-L1 expression. As a case study, we focused on SARS-CoV-2 peptides as relevant antigens to validate the approach. This platform can evoke both local and systemic cellular- and humoral-specific responses against SARS-CoV-2. This led to the secretion of immunoglobulin A (IgA), capable of neutralizing SARS-CoV-2, including variants of concern, following a heterologous immunization strategy. Considering the limitations of the required cold chain distribution for current nanotechnology-based vaccines, it is shown that the lyophilized nanovaccine is stable for long-term at room temperature and retains its in vivo efficacy upon reconstitution. This makes it particularly relevant for developing countries and offers a modular system adaptable to future viral threats.


Asunto(s)
Administración Intranasal , Antígeno B7-H1 , Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , COVID-19/prevención & control , COVID-19/inmunología , COVID-19/terapia , Vacunas contra la COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Animales , Antígeno B7-H1/inmunología , Administración Intranasal/métodos , Ratones , Inmunoterapia/métodos , Epítopos/inmunología , Humanos , Nanopartículas , Femenino , Nanovacunas
13.
iScience ; 26(2): 105957, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36687315

RESUMEN

Monkeypox virus (MPXV) resides in two forms; mature and enveloped, and depending on it, distinct proteins are displayed on the viral surface. Here, we expressed two MPXV antigens from the mature, and one from the enveloped form, and tested their reactivity to sera of 11 MPXV recoverees while comparing to sera from recently and past vaccinated individuals. 8 out of 11 recoverees exhibited detectable neutralization levels against Vaccinia Lister. Sera from all recoverees bound strongly to A35R and H3L antigens. Moreover, the responses to A35R were significantly higher within the recoverees compared to both recently and past vaccinated donors. Lastly, A35R- and H3L-specific IgG+ B cells ranging from 0.03-0.46% and 0.11-0.36%, respectively, were detected in all recoverees (A35R), and in 9 out of 11 recoverees (H3L). Therefore, A35R and H3L represent MPXV immune targets and could be used in a heat-inactivated serological ELISA for the identification of recent MPXV infection.

14.
JCI Insight ; 8(13)2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37252802

RESUMEN

SARS-CoV-2 mRNA vaccination generates protective B cell responses targeting the SARS-CoV-2 spike glycoprotein. Whereas anti-spike memory B cell responses are long lasting, the anti-spike humoral antibody response progressively wanes, making booster vaccinations necessary for maintaining protective immunity. Here, we qualitatively investigated the plasmablast responses by measuring from single cells within hours of sampling the affinity of their secreted antibody for the SARS-CoV-2 spike receptor binding domain (RBD) in cohorts of BNT162b2-vaccinated naive and COVID-19-recovered individuals. Using a droplet microfluidic and imaging approach, we analyzed more than 4,000 single IgG-secreting cells, revealing high interindividual variability in affinity for RBD, with variations over 4 logs. High-affinity plasmablasts were induced by BNT162b2 vaccination against Hu-1 and Omicron RBD but disappeared quickly thereafter, whereas low-affinity plasmablasts represented more than 65% of the plasmablast response at all time points. Our droplet-based method thus proves efficient at fast and qualitative immune monitoring and should be helpful for optimization of vaccination protocols.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , SARS-CoV-2/genética , Microfluídica , COVID-19/prevención & control , ARN Mensajero
15.
Commun Biol ; 5(1): 789, 2022 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931732

RESUMEN

As new variants of SARS-CoV-2 continue to emerge, it is important to assess the cross-neutralizing capabilities of antibodies naturally elicited during wild type SARS-CoV-2 infection. In the present study, we evaluate the activity of nine anti-SARS-CoV-2 monoclonal antibodies (mAbs), previously isolated from convalescent donors infected with the Wuhan-Hu-1 strain, against the SARS-CoV-2 variants of concern (VOC) Alpha, Beta, Gamma, Delta and Omicron. By testing an array of mutated spike receptor binding domain (RBD) proteins, cell-expressed spike proteins from VOCs, and neutralization of SARS-CoV-2 VOCs as pseudoviruses, or as the authentic viruses in culture, we show that mAbs directed against the ACE2 binding site (ACE2bs) are more sensitive to viral evolution compared to anti-RBD non-ACE2bs mAbs, two of which retain their potency against all VOCs tested. At the second part of our study, we reveal the neutralization mechanisms at high molecular resolution of two anti-SARS-CoV-2 neutralizing mAbs by structural characterization. We solve the structures of the Delta-neutralizing ACE2bs mAb TAU-2303 with the SARS-CoV-2 spike trimer and RBD at 4.5 Å and 2.42 Å resolutions, respectively, revealing a similar mode of binding to that between the RBD and ACE2. Furthermore, we provide five additional structures (at resolutions of 4.7 Å, 7.3 Å, 6.4 Å, 3.3 Å, and 6.1 Å) of a second antibody, TAU-2212, complexed with the SARS-CoV-2 spike trimer. TAU-2212 binds an exclusively quaternary epitope, and exhibits a unique, flexible mode of neutralization that involves transitioning between five different conformations, with both arms of the antibody recruited for cross linking intra- and inter-spike RBD subunits. Our study provides additional mechanistic understanding about how antibodies neutralize SARS-CoV-2 and its emerging variants and provides insights on the likelihood of reinfections.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Monoclonales/química , Anticuerpos Antivirales , Humanos , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/química
16.
Vaccines (Basel) ; 10(8)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893835

RESUMEN

Patients with inflammatory bowel disease (IBD) treated with anti-tumor-necrosis factor-alpha (TNFα) exhibited lower serologic responses one-month following the second dose of the COVID-19 BNT162b2 vaccine compared to those not treated with anti-TNFα (non-anti-TNFα) or to healthy controls (HCs). We comprehensively analyzed long-term humoral responses, including anti-spike (S) antibodies, serum inhibition, neutralization, cross-reactivity and circulating B cell six months post BNT162b2, in patients with IBD stratified by therapy compared to HCs. Subjects enrolled in a prospective, controlled, multi-center Israeli study received two BNT162b2 doses. Anti-S levels, functional activity, specific B cells, antigen cross-reactivity, anti-nucleocapsid levels, adverse events and IBD disease score were detected longitudinally. In total, 240 subjects, 151 with IBD (94 not treated with anti-TNFα and 57 treated with anti-TNFα) and 89 HCs participated. Six months after vaccination, patients with IBD treated with anti-TNFα had significantly impaired BNT162b2 responses, specifically, more seronegativity, decreased specific circulating B cells and cross-reactivity compared to patients untreated with anti-TNFα. Importantly, all seronegative subjects were patients with IBD; of those, >90% were treated with anti-TNFα. Finally, IBD activity was unaffected by BNT162b2. Altogether these data support the earlier booster dose administration in these patients.

17.
Hum Vaccin Immunother ; 17(10): 3551-3553, 2021 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-34032550

RESUMEN

Neutralizing antibodies are the basis of almost all approved prophylactic vaccines and the foundation of effective protection from pathogens, including the recently emerging SARS Coronavirus 2 (SARS-CoV-2). However, the contribution of antibodies to protection and to the course of the disease during first-time exposure to a pathogen is unknown. We analyzed the antibodies and B cell responses in severe and mild COVID-19 patients. Despite our primary assumption that high antibody titers contribute to a mild disease, we found that severe COVID-19 illness, and not mild infection, correlates with strong anti-viral antibody and memory B cell responses. This phenomenon was also demonstrated for anti-Mycobacterium tuberculosis inhibiting antibodies that we recently isolated from an actively infected Tuberculosis-sick donor. This correlation between disease severity and antibody responses can be explained by the fact that high viral loads drive B cell stimulation and generation of high-affinity antibodies that will be protective upon future encounter with the particular pathogen.


Asunto(s)
COVID-19 , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
18.
Cell Host Microbe ; 29(6): 849-851, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34111390

RESUMEN

One barrier to HIV-1 eradication is the viral Env protein that is invisible to most antibodies. In this issue of Cell Host & Microbe, Rajashekar et al. (2021) remove the "invisibility cloak" from Env, make it accessible to antibodies, and demonstrate NK-mediated in vivo killing of infected cells by human plasma antibodies.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Linfocitos T CD4-Positivos/inmunología , Humanos , Ratones , Células T Asesinas Naturales/inmunología
19.
Nat Commun ; 12(1): 602, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504803

RESUMEN

Mycobacterium tuberculosis (Mtb) exposure drives antibody responses, but whether patients with active tuberculosis elicit protective antibodies, and against which antigens, is still unclear. Here we generate monoclonal antibodies from memory B cells of one patient to investigate the B cell responses during active infection. The antibodies, members of four distinct B cell clones, are directed against the Mtb phosphate transporter subunit PstS1. Antibodies p4-36 and p4-163 reduce Mycobacterium bovis-BCG and Mtb levels in an ex vivo human whole blood growth inhibition assay in an FcR-dependent manner; meanwhile, germline versions of p4-36 and p4-163 do not bind Mtb. Crystal structures of p4-36 and p4-170, complexed to PstS1, are determined at 2.1 Å and 2.4 Å resolution, respectively, to reveal two distinctive PstS1 epitopes. Lastly, a prophylactic p4-36 and p4-163 treatment in Mtb-infected Balb/c mice reduces bacterial lung burden by 50%. Our study shows that inhibitory anti-PstS1 B cell responses arise during active tuberculosis.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/inmunología , Proteínas de Transporte de Membrana/inmunología , Mycobacterium tuberculosis/inmunología , Tuberculosis/inmunología , Tuberculosis/prevención & control , Adulto , Secuencia de Aminoácidos , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Linfocitos B/inmunología , Proteínas Bacterianas/química , Epítopos/química , Humanos , Memoria Inmunológica , Masculino , Ratones Endogámicos BALB C , Modelos Moleculares , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Células THP-1 , Tuberculosis/sangre , Tuberculosis/microbiología
20.
bioRxiv ; 2020 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-33052341

RESUMEN

The interactions between antibodies, SARS-CoV-2 and immune cells contribute to the pathogenesis of COVID-19 and protective immunity. To understand the differences between antibody responses in mild versus severe cases of COVID-19, we analyzed the B cell responses in patients 1.5 months post SARS-CoV-2 infection. Severe and not mild infection correlated with high titers of IgG against Spike receptor binding domain (RBD) that were capable of viral inhibition. B cell receptor (BCR) sequencing revealed two VH genes, VH3-38 and VH3-53, that were enriched during severe infection. Of the 22 antibodies cloned from two severe donors, six exhibited potent neutralization against live SARS-CoV-2, and inhibited syncytia formation. Using peptide libraries, competition ELISA and RBD mutagenesis, we mapped the epitopes of the neutralizing antibodies (nAbs) to three different sites on the Spike. Finally, we used combinations of nAbs targeting different immune-sites to efficiently block SARS-CoV-2 infection. Analysis of 49 healthy BCR repertoires revealed that the nAbs germline VHJH precursors comprise up to 2.7% of all VHJHs. We demonstrate that severe COVID-19 is associated with unique BCR signatures and multi-clonal neutralizing responses that are relatively frequent in the population. Moreover, our data support the use of combination antibody therapy to prevent and treat COVID-19.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA