RESUMEN
Methylamine (CH3NH2) and methanimine (CH2NH) represent essential building blocks in the formation of amino acids in interstellar and cometary ices. In our study, by exploiting isomer selective detection of the reaction products via photoionization coupled with reflectron time of flight mass spectrometry (Re-TOF-MS), we elucidate the formation of methanimine and ethylenediamine (NH2CH2CH2NH2) in methylamine ices exposed to energetic electrons as a proxy for secondary electrons generated by energetic cosmic rays penetrating interstellar and cometary ices. Interestingly, the two products methanimine and ethylenediamine are isoelectronic to formaldehyde (H2CO) and ethylene glycol (HOCH2CH2OH), respectively. Their formation has been confirmed in interstellar ice analogs consisting of methanol (CH3OH) which is ioselectronic to methylamine. Both oxygen-bearing species formed in methanol have been detected in the interstellar medium (ISM), while for methanimine and ethylenediamine only methanimine has been identified so far. In comparison with the methanol ice products and our experimental findings, we predict that ethylenediamine should be detectable in these astronomical sources, where methylamine and methanimine are present.
Asunto(s)
Etilenodiaminas/química , Iminas/química , Frío , Formaldehído/química , Radiación Ionizante , Rayos Ultravioleta , VacioRESUMEN
Titan's equatorial dunes represent the most monumental surface structures in our Solar System, but the chemical composition of their dark organics remains a fundamental, unsolved enigma, with solid acetylene detected near the dunes implicated as a key feedstock. Here, we reveal in laboratory simulation experiments that aromatics such as benzene, naphthalene, and phenanthrene-prospective building blocks of the organic dune material-can be efficiently synthesized via galactic cosmic ray exposure of low-temperature acetylene ices on Titan's surface, hence challenging conventional wisdom that aromatic hydrocarbons are formed solely in Titan's atmosphere. These processes are also of critical importance in unraveling the origin and chemical composition of the dark surfaces of airless bodies in the outer Solar System, where hydrocarbon precipitation from the atmosphere cannot occur. This finding notably advances our understanding of the distribution of carbon throughout our Solar System such as on Kuiper belt objects like Makemake.
RESUMEN
For decades, the source of phosphorus incorporated into Earth's first organisms has remained a fundamental, unsolved puzzle. Although contemporary biomolecules incorporate P(+V) in their phosphate moieties, the limited bioavailability of phosphates led to the proposal that more soluble P(+III) compounds served as the initial source of phosphorus. Here, we report via laboratory simulation experiments that the three simplest alkylphosphonic acids, soluble organic phosphorus P(+III) compounds, can be efficiently generated in interstellar, phosphine-doped ices through interaction with galactic cosmic rays. This discovery opens a previously overlooked avenue into the formation of key molecules of astrobiological significance and untangles basic mechanisms of a facile synthesis of phosphorus-containing organics in extraterrestrial ices, which can be incorporated into comets and asteroids before their delivery and detection on Earth such as in the Murchison meteorite.
RESUMEN
The formylphosphine (HCOPH2) molecule was detected in the gas phase via isomer selective photoionization reflectron time-of-flight mass spectrometry (PI-ReTOF-MS). Synthesized in carbon monoxide (CO)-phosphine ices (PH3) exposed to ionizing radiation, the formation mechanism involves an initial phosphorus-hydrogen bond rupture in phosphine yielding the phosphino radical (PH2) along with atomic hydrogen, addition of the suprathermal hydrogen atom to carbon monoxide leading to the formyl radical (HCO), and recombination of both radicals to formylphosphine (HCOPH2). This molecule represents the isovalent counterpart of the ubiquitous interstellar formamide (HCONH2). This study provides a fundamental framework to explore the synthesis and stability of the simplest isovalent counterpart of interstellar formamide (HCONH2) and suggests that formylphosphine (HCOPH2) should be detectable in the interstellar medium eventually providing a missing link between phosphorus-bearing complex organic molecules detected in the interstellar medium and on comet 67P/Churyumov-Gerasimenko.
RESUMEN
The hitherto elusive phosphino formic acid molecule (H2PCOOH) was detected for the first time in the gas phase. Theoretical calculations revealed an unexpected kinetic stability of H2PCOOH compared to the isovalent carbamic acid (H2NCOOH) although the replacement of a single nitrogen atom by phosphorus decreases the bond order from a partial double (-C[double bond, length as m-dash]N-) to a single (-C-P-) bond. This work provides a fundamental framework to explore the synthesis and stability of derivatives of carbonic acid (H2CO3), in which one or both hydroxyl groups (OH) are replaced by hydride moieties involving third row atoms.
RESUMEN
Intermolecular reactions in and on icy films on silicate and carbonaceous grains constitute a major route for the formation of new molecular constituents in interstellar molecular clouds. In more diffuse regions and in protoplanetary discs, energetic radiation can trigger reaction routes far from thermal equilibrium. As an analog of interstellar ice-covered dust grains, highly-oriented pyrolytic graphite (HOPG) covered with D2O, NO, and H atoms is irradiated by ultrashort XUV pulses and the desorbing ionic and neutral products are analysed. The yields of several products show a nonlinear intensity dependence and thus enable the elucidation of reaction dynamics by two-pulse correlated desorption.