RESUMEN
The primary cilium is a microtubule-based organelle that serves as a hub for many signaling pathways. It functions as part of the centrosome or cilium complex, which also contains the basal body and the centriolar satellites. Little is known about the mechanisms by which the microtubule-based ciliary axoneme is assembled with a proper length and structure, particularly in terms of the activity of microtubule-associated proteins (MAPs) and the crosstalk between the different compartments of the centrosome or cilium complex. Here, we analyzed CCDC66, a MAP implicated in cilium biogenesis and ciliopathies. Live-cell imaging revealed that CCDC66 compartmentalizes between centrosomes, centriolar satellites, and the ciliary axoneme and tip during cilium biogenesis. CCDC66 depletion in human cells causes defects in cilium assembly, length and morphology. Notably, CCDC66 interacts with the ciliopathy-linked MAPs CEP104 and CSPP1, and regulates axonemal length and Hedgehog pathway activation. Moreover, CCDC66 is required for the basal body recruitment of transition zone proteins and intraflagellar transport B (IFT-B) machinery. Overall, our results establish CCDC66 as a multifaceted regulator of the primary cilium and provide insight into how ciliary MAPs and subcompartments cooperate to ensure assembly of functional cilia.
Asunto(s)
Axonema , Cilios , Humanos , Cilios/metabolismo , Axonema/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Centriolos/metabolismo , Proteínas del Ojo/metabolismoRESUMEN
Mechanisms regulating the gene expression program at different hypoxia severity levels in patient tumors are not understood. We aimed to determine microRNA (miRNA) regulation of this program at defined hypoxia levels from moderate to severe in prostate cancer. Biopsies from 95 patients were used, where 83 patients received the hypoxia marker pimonidazole before prostatectomy. Forty hypoxia levels were extracted from pimonidazole-stained histological sections and correlated with miRNA and gene expression profiles determined by RNA sequencing and Illumina bead arrays. This identified miRNAs associated with moderate (n = 7) and severe (n = 28) hypoxia and predicted their target genes. The scores of miRNAs or target genes showed prognostic significance, as validated in an external cohort of 417 patients. The target genes showed enrichment of gene sets for cell proliferation and MYC activation at all hypoxia levels and PTEN inactivation at severe hypoxia. This was confirmed by RT-qPCR for MYC and PTEN, by Ki67 immunohistochemistry, and by gene set analysis in an external cohort. To assess whether miRNA regulation occurred within the predicted hypoxic regions, a method to quantify co-localization of multiple histopathology parameters at defined hypoxia levels was applied. A high Ki67 proliferation index co-localized significantly with hypoxia at all levels. The co-localization index was strongly associated with poor prognosis. Absence of PTEN staining co-localized significantly with severe hypoxia. The scores for miRNAs correlated with the co-localization index for Ki67 staining and hypoxia, consistent with miRNA regulation within the overlapping regions. This was confirmed by showing miR-210-3p expression within severe hypoxia by in situ hybridization. Cell line experiments (22Rv1, PC3) were conducted to determine whether miRNAs and target genes were regulated directly by hypoxia. Most of them were hypoxia-unresponsive, and probably regulated by other mechanisms such as MYC activation. In conclusion, in aggressive, hypoxic prostate tumors, cancer cells exhibit different proliferative gene expression programs that is regulated by miRNAs and depend on whether the cells reside in moderate or severe hypoxic regions. © 2024 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Asunto(s)
Regulación Neoplásica de la Expresión Génica , MicroARNs , Neoplasias de la Próstata , Hipoxia Tumoral , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Hipoxia Tumoral/genética , Proliferación Celular , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Anciano , Persona de Mediana Edad , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , PronósticoRESUMEN
Ciliopathies are clinically and genetically heterogeneous diseases. We studied three patients from two independent families presenting with features of Joubert syndrome: abnormal breathing pattern during infancy, developmental delay/intellectual disability, cerebellar ataxia, molar tooth sign on magnetic resonance imaging scans, and polydactyly. We identified biallelic loss-of-function (LOF) variants in CBY1, segregating with the clinical features of Joubert syndrome in the families. CBY1 localizes to the distal end of the mother centriole, contributing to the formation and function of cilia. In accordance with the clinical and mutational findings in the affected individuals, we demonstrated that depletion of Cby1 in zebrafish causes ciliopathy-related phenotypes. Levels of CBY1 transcript were found reduced in the patients compared with controls, suggesting degradation of the mutated transcript through nonsense-mediated messenger RNA decay. Accordingly, we could detect CBY1 protein in fibroblasts from controls, but not from patients by immunofluorescence. Furthermore, we observed reduced ability to ciliate, increased ciliary length, and reduced levels of the ciliary proteins AHI1 and ARL13B in patient fibroblasts. Our data show that CBY1 LOF-variants cause a ciliopathy with features of Joubert syndrome.
Asunto(s)
Anomalías Múltiples/genética , Proteínas Portadoras/genética , Cerebelo/anomalías , Ciliopatías/genética , Anomalías del Ojo/genética , Enfermedades Renales Quísticas/genética , Mutación/genética , Proteínas Nucleares/genética , Retina/anomalías , Anomalías Múltiples/diagnóstico por imagen , Anomalías Múltiples/patología , Adolescente , Animales , Cerebelo/diagnóstico por imagen , Cerebelo/patología , Niño , Preescolar , Cilios/metabolismo , Cilios/patología , Ciliopatías/diagnóstico por imagen , Ciliopatías/patología , Anomalías del Ojo/diagnóstico por imagen , Anomalías del Ojo/patología , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Homocigoto , Humanos , Lactante , Recién Nacido , Enfermedades Renales Quísticas/diagnóstico por imagen , Enfermedades Renales Quísticas/patología , Imagen por Resonancia Magnética , Masculino , Linaje , Fenotipo , Retina/diagnóstico por imagen , Retina/patología , Receptor Smoothened/metabolismo , Adulto Joven , Pez Cebra/genéticaRESUMEN
Microtubules are dynamic cytoskeletal polymers, and their organization and stability are tightly regulated by numerous cellular factors. While regulatory proteins controlling the formation of interphase microtubule arrays and mitotic spindles have been extensively studied, the biochemical mechanisms responsible for generating stable microtubule cores of centrioles and cilia are poorly understood. Here, we used in vitro reconstitution assays to investigate microtubule-stabilizing properties of CSPP1, a centrosome and cilia-associated protein mutated in the neurodevelopmental ciliopathy Joubert syndrome. We found that CSPP1 preferentially binds to polymerizing microtubule ends that grow slowly or undergo growth perturbations and, in this way, resembles microtubule-stabilizing compounds such as taxanes. Fluorescence microscopy and cryo-electron tomography showed that CSPP1 is deposited in the microtubule lumen and inhibits microtubule growth and shortening through two separate domains. CSPP1 also specifically recognizes and stabilizes damaged microtubule lattices. These data help to explain how CSPP1 regulates the elongation and stability of ciliary axonemes and other microtubule-based structures.
Asunto(s)
Proteínas de Ciclo Celular , Proteínas Asociadas a Microtúbulos , Microtúbulos , Centriolos/metabolismo , Centrosoma/metabolismo , Citoesqueleto/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , HumanosRESUMEN
The centrosome is the main microtubule-organizing center of animal cells, and is composed of two barrel-shaped microtubule-based centrioles embedded in protein dense pericentriolar material. Compositional and architectural re-organization of the centrosome drives its duplication, and enables its microtubule-organizing activity and capability to form the primary cilium, which extends from the mature (mother) centriole, as the cell exits the cell cycle. Centrosomes and primary cilia are essential to human health, signified by the causal role of centrosome- and cilia-aberrations in numerous congenic disorders, as well as in the etiology and progression of cancer. The list of disease-associated centrosomal proteins and their proximitomes is steadily expanding, emphasizing the need for high resolution mapping of such proteins to specific substructures of the organelle. Here, we provide a detailed 3D-structured illumination microscopy (3D-SIM) protocol for comparative localization analysis of fluorescently labeled proteins at the centrosome in fixed human cell lines, at approximately 120 nm lateral and 300 nm axial resolution. The procedure was optimized to work with primary antibodies previously known to depend on more disruptive fixation reagents, yet largely preserves centriole and centrosome architecture, as shown by transposing acquired images of landmark proteins on previously published transmission electron microscopy (TEM) images of centrosomes. Even more advantageously, it is compatible with fluorescent protein tags. Finally, we introduce an internal reference to ensure correct 3D channel alignment. This protocol hence enables flexible, swift, and information-rich localization and interdependence analyses of centrosomal proteins, as well as their disorder-associated mutations.
RESUMEN
CEP104 is an evolutionarily conserved centrosomal and ciliary tip protein. CEP104 loss-of-function mutations are reported in patients with Joubert syndrome, but their function in the etiology of ciliopathies is poorly understood. Here, we show that cep104 silencing in zebrafish causes cilia-related manifestations: shortened cilia in Kupffer's vesicle, heart laterality, and cranial nerve development defects. We show that another Joubert syndrome-associated cilia tip protein, CSPP1, interacts with CEP104 at microtubules for the regulation of axoneme length. We demonstrate in human telomerase reverse transcriptase-immortalized retinal pigmented epithelium (hTERT-RPE1) cells that ciliary translocation of Smoothened in response to Hedgehog pathway stimulation is both CEP104 and CSPP1 dependent. However, CEP104 is not required for the ciliary recruitment of CSPP1, indicating that an intra-ciliary CEP104-CSPP1 complex controls axoneme length and Hedgehog signaling competence. Our in vivo and in vitro analyses of CEP104 define its interaction with CSPP1 as a requirement for the formation of Hedgehog signaling-competent cilia, defects that underlie Joubert syndrome.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Cilios/fisiología , Ciliopatías/patología , Proteínas Hedgehog/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Células Cultivadas , Ciliopatías/metabolismo , Proteínas Hedgehog/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Mutación , Epitelio Pigmentado de la Retina/citología , Transducción de Señal , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genéticaRESUMEN
Current clinical algorithms are unable to precisely predict which colorectal cancer patients would benefit from adjuvant chemotherapy, and there is a need for novel biomarkers to improve the selection of patients. The metastasis-promoting protein S100A4 predicts poor outcome in colorectal cancer, but whether it could be used to guide clinical decision making remains to be resolved. S100A4 expression was analyzed by immunohistochemistry in primary colorectal carcinomas from a consecutively collected, population-representative cohort and a randomized phase III study on adjuvant 5-fluorouracil/levamisole. Sensitivity to treatment with 5-fluorouracil in S100A4 knockdown cells was investigated using 2D and 3D cell culture assays. Strong nuclear expression of S100A4 was detected in 19% and 23% of the tumors in the two study cohorts, respectively. In both cohorts, nuclear immunoreactivity was associated with reduced relapse-free (P < 0.001 and P = 0.010) and overall survival (P = 0.046 and P = 0.006) in univariate analysis. In multivariate analysis, nuclear S100A4 was a predictor of poor relapse-free survival in the consecutive series (P = 0.002; HR 1.9), but not in the randomized study. Sensitivity to treatment with 5-fluorouracil was not affected by S100A4 expression in in vitro cell culture assays, and there was no indication from subgroup analyses in the randomized study that S100A4 expression was associated with increased benefit of adjuvant treatment with 5-fluorouracil/levamisole. The present study confirms that nuclear S100A4 expression is a negative prognostic biomarker in colorectal cancer, but the clinical utility in selection of patients for adjuvant fluoropyrimidine-based chemotherapy is limited.
Asunto(s)
Biomarcadores de Tumor/metabolismo , Neoplasias Colorrectales/diagnóstico , Proteína de Unión al Calcio S100A4/metabolismo , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Quimioterapia Adyuvante , Toma de Decisiones Clínicas , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Femenino , Fluorouracilo/administración & dosificación , Humanos , Estimación de Kaplan-Meier , Levamisol/administración & dosificación , Masculino , Persona de Mediana Edad , Proteínas de Neoplasias/metabolismo , Estadificación de Neoplasias , Pronóstico , Resultado del Tratamiento , Células Tumorales CultivadasRESUMEN
Deleterious mutations of the Centrosome/Spindle Pole associated Protein 1 gene, CSPP1, are causative for Joubert-syndrome and Joubert-related developmental disorders. These disorders are defined by a characteristic mal-development of the brain, but frequently involve renal and hepatic cyst formation. CSPP-L, the large protein isoform of CSPP1 localizes to microtubule ends of the mitotic mid-spindle and the ciliary axoneme, and is required for ciliogenesis. We here report the microtubule independent but Desmoplakin dependent localization of CSPP-L to Desmosomes in apical-basal polarized epithelial cells. Importantly, siRNA conferred depletion of CSPP-L or Desmoplakin promoted multi-lumen spheroid formation in 3D-cultures of non-ciliated human colon carcinoma Caco-2 cells. Multi-lumen spheroids of CSPP1 siRNA transfectants showed disrupted apical cell junction localization of the cytoskeleton organizing RhoGEF ECT2. Our results hence identify a novel, non-ciliary role for CSPP-L in epithelial morphogenesis.