Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
BMC Biol ; 20(1): 141, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35705990

RESUMEN

BACKGROUND: DNA methylation is involved in the epigenetic regulation of gene expression during developmental processes and is primarily established by the DNA methyltransferase 3A (DNMT3A) and 3B (DNMT3B). DNMT3A is one of the most frequently mutated genes in clonal hematopoiesis and leukemia, indicating that it plays a crucial role for hematopoietic differentiation. However, the functional relevance of Dnmt3a for hematopoietic differentiation and hematological malignancies has mostly been analyzed in mice, with the specific role for human hematopoiesis remaining elusive. In this study, we therefore investigated if DNMT3A is essential for hematopoietic differentiation of human induced pluripotent stem cells (iPSCs). RESULTS: We generated iPSC lines with knockout of either exon 2, 19, or 23 and analyzed the impact of different DNMT3A exon knockouts on directed differentiation toward mesenchymal and hematopoietic lineages. Exon 19-/- and 23-/- lines displayed an almost entire absence of de novo DNA methylation during mesenchymal and hematopoietic differentiation. Yet, differentiation efficiency was only slightly reduced in exon 19-/- and rather increased in exon 23-/- lines, while there was no significant impact on gene expression in hematopoietic progenitors (iHPCs). Notably, DNMT3A-/- iHPCs recapitulate some DNA methylation patterns of acute myeloid leukemia (AML) with DNMT3A mutations. Furthermore, multicolor genetic barcoding revealed growth advantage of exon 23-/- iHPCs in a syngeneic competitive differentiation assay. CONCLUSIONS: Our results demonstrate that iPSCs with homozygous knockout of different exons of DNMT3A remain capable of mesenchymal and hematopoietic differentiation-and exon 23-/- iHPCs even gained growth advantage-despite loss of almost the entire de novo DNA methylation. Partial recapitulation of DNA methylation patterns of AML with DNMT3A mutations by our DNMT3A knockout iHPCs indicates that our model system can help to elucidate mechanisms of clonal hematopoiesis.


Asunto(s)
Células Madre Pluripotentes Inducidas , Leucemia Mieloide Aguda , Animales , Diferenciación Celular/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN , ADN Metiltransferasa 3A , Epigénesis Genética , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Ratones
2.
Clin Chem ; 64(3): 566-575, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29118064

RESUMEN

BACKGROUND: White blood cell counts are routinely measured with automated hematology analyzers, by flow cytometry, or by manual counting. Here, we introduce an alternative approach based on DNA methylation (DNAm) at individual CG dinucleotides (CpGs). METHODS: We identified candidate CpGs that were nonmethylated in specific leukocyte subsets. DNAm levels (ranging from 0% to 100%) were analyzed by pyrosequencing and implemented into deconvolution algorithms to determine the relative composition of leukocytes. For absolute quantification of cell numbers, samples were supplemented with a nonmethylated reference DNA. RESULTS: Conventional blood counts correlated with DNAm at individual CpGs for granulocytes (r = -0.91), lymphocytes (r = -0.91), monocytes (r = -0.74), natural killer (NK) cells (r = -0.30), T cells (r = -0.73), CD4+ T cells (r = -0.41), CD8+ T cells (r = -0.88), and B cells (r = -0.66). Combination of these DNAm measurements into the "Epi-Blood-Count" provided similar precision as conventional methods in various independent validation sets. The method was also applicable to blood samples that were stored at 4 °C for 7 days or at -20 °C for 3 months. Furthermore, absolute cell numbers could be determined in frozen blood samples upon addition of a reference DNA, and the results correlated with measurements of automated analyzers in fresh aliquots (r = 0.84). CONCLUSIONS: White blood cell counts can be reliably determined by site-specific DNAm analysis. This approach is applicable to very small blood volumes and frozen samples, and it allows for more standardized and cost-effective analysis in clinical application.


Asunto(s)
Citosina/metabolismo , Metilación de ADN , Recuento de Leucocitos/métodos , Conservación de la Sangre/métodos , Proteínas Portadoras/genética , Islas de CpG , Humanos , Leucocitos/fisiología , Subgrupos Linfocitarios , Linfoma/sangre , Linfoma/genética , Proteínas Proto-Oncogénicas c-fyn/genética , Reproducibilidad de los Resultados
3.
FEBS Lett ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38803008

RESUMEN

The intricate mechanisms underlying transcription-dependent genome instability involve G-quadruplexes (G4) and R-loops. This perspective elucidates the potential link between these structures and genome instability in aging. The co-occurrence of G4 DNA and RNA-DNA hybrid structures (G-loop) underscores a complex interplay in genome regulation and instability. Here, we hypothesize that the age-related decline of sirtuin function leads to an increase in acetylated helicases that bind to G4 DNA and RNA-DNA hybrid structures, but are less efficient in resolving them. We propose that acetylated, less active, helicases induce persistent G-loop structures, promoting transcription-dependent genome instability in aging.

4.
Clin Epigenetics ; 11(1): 19, 2019 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-30717806

RESUMEN

BACKGROUND: Differentiation of induced pluripotent stem cells (iPSCs) toward hematopoietic progenitor cells (HPCs) raises high hopes for disease modeling, drug screening, and cellular therapy. Various differentiation protocols have been established to generate iPSC-derived HPCs (iHPCs) that resemble their primary counterparts in morphology and immunophenotype, whereas a systematic epigenetic comparison was yet elusive. RESULTS: In this study, we compared genome-wide DNA methylation (DNAm) patterns of iHPCs with various different hematopoietic subsets. After 20 days of in vitro differentiation, cells revealed typical hematopoietic morphology, CD45 expression, and colony-forming unit (CFU) potential. DNAm changes were particularly observed in genes that are associated with hematopoietic differentiation. On the other hand, the epigenetic profiles of iHPCs remained overall distinct from natural HPCs. Furthermore, we analyzed if additional co-culture for 2 weeks with syngenic primary mesenchymal stromal cells (MSCs) or iPSC-derived MSCs (iMSCs) further supports epigenetic maturation toward the hematopoietic lineage. Proliferation of iHPCs and maintenance of CFU potential was enhanced upon co-culture. However, DNAm profiles support the notion that additional culture expansion with stromal support did not increase epigenetic maturation of iHPCs toward natural HPCs. CONCLUSION: Differentiation of iPSCs toward the hematopoietic lineage remains epigenetically incomplete. These results substantiate the need to elaborate advanced differentiation regimen while DNAm profiles provide a suitable measure to track this process.


Asunto(s)
Metilación de ADN , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes Inducidas/citología , Antígenos Comunes de Leucocito/genética , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Epigénesis Genética , Células Madre Hematopoyéticas/química , Humanos , Células Madre Pluripotentes Inducidas/química , Células Madre Mesenquimatosas/citología
5.
Clin Epigenetics ; 10: 67, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29796118

RESUMEN

Background: Transplantation of human hematopoietic stem cells into immunodeficient mice provides a powerful in vivo model system to gain functional insights into hematopoietic differentiation. So far, it remains unclear if epigenetic changes of normal human hematopoiesis are recapitulated upon engraftment into such "humanized mice." Mice have a much shorter life expectancy than men, and therefore, we hypothesized that the xenogeneic environment might greatly accelerate the epigenetic clock. Results: We demonstrate that genome-wide DNA methylation patterns of normal human hematopoietic development are indeed recapitulated upon engraftment in mice-particularly those of normal early B cell progenitor cells. Furthermore, we tested three epigenetic aging signatures, and none of them indicated that the murine environment accelerated age-associated DNA methylation changes. Conclusions: Epigenetic changes of human hematopoietic development are recapitulated in the murine transplantation model, whereas epigenetic aging is not accelerated by the faster aging environment and seems to occur in the cell intrinsically.


Asunto(s)
Metilación de ADN , Estudio de Asociación del Genoma Completo/métodos , Células Madre Hematopoyéticas/citología , Animales , Diferenciación Celular , Células Cultivadas , Senescencia Celular , Epigénesis Genética , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/química , Humanos , Ratones
6.
Life Sci Alliance ; 1(6): e201800153, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30582132

RESUMEN

De novo DNA methyltransferase 3A (DNMT3A) plays pivotal roles in hematopoietic differentiation. In this study, we followed the hypothesis that alternative splicing of DNMT3A has characteristic epigenetic and functional sequels. Specific DNMT3A transcripts were either down-regulated or overexpressed in human hematopoietic stem and progenitor cells, and this resulted in complementary and transcript-specific DNA methylation and gene expression changes. Functional analysis indicated that, particularly, transcript 2 (coding for DNMT3A2) activates proliferation and induces loss of a primitive immunophenotype, whereas transcript 4 interferes with colony formation of the erythroid lineage. Notably, in acute myeloid leukemia expression of transcript 2 correlates with its in vitro DNA methylation and gene expression signatures and is associated with overall survival, indicating that DNMT3A variants also affect malignancies. Our results demonstrate that specific DNMT3A variants have a distinct epigenetic and functional impact. Particularly, DNMT3A2 triggers hematopoietic differentiation and the corresponding signatures are reflected in acute myeloid leukemia.

7.
J Hematol Oncol ; 9: 43, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27098268

RESUMEN

In vitro culture of hematopoietic stem and progenitor cells (HPCs) is supported by a suitable cellular microenvironment, such as mesenchymal stromal cells (MSCs)-but MSCs are heterogeneous and poorly defined. In this study, we analyzed whether MSCs derived from induced pluripotent stem cells (iPS-MSCs) provide a suitable cellular feeder layer too. iPS-MSCs clearly supported proliferation of HPCs, maintenance of a primitive immunophenotype (CD34(+), CD133(+), CD38(-)), and colony-forming unit (CFU) potential of CD34(+) HPCs. However, particularly long-term culture-initiating cell (LTC-IC) frequency was lower with iPS-MSCs as compared to primary MSCs. Relevant genes for cell-cell interaction were overall expressed at similar level in MSCs and iPS-MSCs, whereas VCAM1 was less expressed in the latter. In conclusion, our iPS-MSCs support in vitro culture of HPCs; however, under the current differentiation and culture conditions, they are less suitable than primary MSCs from bone marrow.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Antígeno AC133 , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos CD34/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Comunicación Celular , Células Cultivadas , Técnicas de Cocultivo , Citometría de Flujo , Perfilación de la Expresión Génica , Glicoproteínas/metabolismo , Células Madre Hematopoyéticas/metabolismo , Humanos , Inmunofenotipificación , Células Madre Pluripotentes Inducidas/metabolismo , Laminina/genética , Laminina/metabolismo , Células Madre Mesenquimatosas/metabolismo , Péptidos/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
8.
Stem Cell Reports ; 6(2): 168-75, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26862701

RESUMEN

Standardization of mesenchymal stromal cells (MSCs) is hampered by the lack of a precise definition for these cell preparations; for example, there are no molecular markers to discern MSCs and fibroblasts. In this study, we followed the hypothesis that specific DNA methylation (DNAm) patterns can assist classification of MSCs. We utilized 190 DNAm profiles to address the impact of tissue of origin, donor age, replicative senescence, and serum supplements on the epigenetic makeup. Based on this, we elaborated a simple epigenetic signature based on two CpG sites to classify MSCs and fibroblasts, referred to as the Epi-MSC-Score. Another two-CpG signature can distinguish between MSCs from bone marrow and adipose tissue, referred to as the Epi-Tissue-Score. These assays were validated by site-specific pyrosequencing analysis in 34 primary cell preparations. Furthermore, even individual subclones of MSCs were correctly classified by our epigenetic signatures. In summary, we propose an alternative concept to use DNAm patterns for molecular definition of cell preparations, and our epigenetic scores facilitate robust and cost-effective quality control of MSC cultures.


Asunto(s)
Epigénesis Genética , Células Madre Mesenquimatosas/clasificación , Células Madre Mesenquimatosas/metabolismo , Tejido Adiposo/citología , Células de la Médula Ósea/citología , Células Clonales , Islas de CpG/genética , Metilación de ADN/genética , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología
9.
Clin Epigenetics ; 7: 116, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26539253

RESUMEN

BACKGROUND: Epigenetic aberrations play a central role in the pathophysiology of acute myeloid leukemia (AML). It has been shown that molecular signatures based on DNA-methylation (DNAm) patterns can be used for classification of the disease. In this study, we followed the hypothesis that DNAm at a single CpG site might support risk stratification in AML. FINDINGS: Using DNAm profiles of 194 patients from The Cancer Genome Atlas (TCGA), we identified a CpG site in complement component 1 subcomponent R (C1R) as best suited biomarker: patients with higher methylation at this CpG site (>27 % DNAm) reveal significantly longer overall survival (53 versus 11 months; P < 0.0001). This finding was validated in an independent set of 62 DNAm profiles of cytogenetically normal AML patients (P = 0.009) and with a region-specific pyrosequencing assay in 84 AML samples (P = 0.012). DNAm of C1R correlated with genomic DNAm and gene expression patterns, whereas there was only moderate association with gene expression levels of C1R. These results indicate that DNAm of C1R is a biomarker reflecting chromatin reorganization rather than being of pathophysiological relevance per se. Notably, DNAm of C1R was associated with occurrence of specific genomic mutations that are traditionally used for risk stratification in AML. Furthermore, DNAm of C1R correlates also with overall survival in several other types of cancer, but the prognostic relevance was less pronounced than in AML. CONCLUSIONS: Analysis of DNAm at C1R provides a simple, robust, and cost-effective biomarker to further complement risk assessment in AML.

10.
Stem Cell Reports ; 3(3): 414-22, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25241740

RESUMEN

Standardization of mesenchymal stromal cells (MSCs) remains a major obstacle in regenerative medicine. Starting material and culture expansion affect cell preparations and render comparison between studies difficult. In contrast, induced pluripotent stem cells (iPSCs) assimilate toward a ground state and may therefore give rise to more standardized cell preparations. We reprogrammed MSCs into iPSCs, which were subsequently redifferentiated toward MSCs. These iPS-MSCs revealed similar morphology, immunophenotype, in vitro differentiation potential, and gene expression profiles as primary MSCs. However, iPS-MSCs were impaired in suppressing T cell proliferation. DNA methylation (DNAm) profiles of iPSCs maintained donor-specific characteristics, whereas tissue-specific, senescence-associated, and age-related DNAm patterns were erased during reprogramming. iPS-MSCs reacquired senescence-associated DNAm during culture expansion, but they remained rejuvenated with regard to age-related DNAm. Overall, iPS-MSCs are similar to MSCs, but they reveal incomplete reacquisition of immunomodulatory function and MSC-specific DNAm patterns-particularly of DNAm patterns associated with tissue type and aging.


Asunto(s)
Epigénesis Genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Diferenciación Celular , Células Cultivadas , Metilación de ADN , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA