Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 32(17): 2717-2734, 2023 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-37369025

RESUMEN

Inherited disorders of mitochondrial metabolism, including isolated methylmalonic aciduria, present unique challenges to energetic homeostasis by disrupting energy-producing pathways. To better understand global responses to energy shortage, we investigated a hemizygous mouse model of methylmalonyl-CoA mutase (Mmut)-type methylmalonic aciduria. We found Mmut mutant mice to have reduced appetite, energy expenditure and body mass compared with littermate controls, along with a relative reduction in lean mass but increase in fat mass. Brown adipose tissue showed a process of whitening, in line with lower body surface temperature and lesser ability to cope with cold challenge. Mutant mice had dysregulated plasma glucose, delayed glucose clearance and a lesser ability to regulate energy sources when switching from the fed to fasted state, while liver investigations indicated metabolite accumulation and altered expression of peroxisome proliferator-activated receptor and Fgf21-controlled pathways. Together, these shed light on the mechanisms and adaptations behind energy imbalance in methylmalonic aciduria and provide insight into metabolic responses to chronic energy shortage, which may have important implications for disease understanding and patient management.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Ratones , Animales , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Metabolismo Energético/genética , Hígado/metabolismo
2.
Am J Hum Genet ; 108(7): 1283-1300, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34214447

RESUMEN

Most rare clinical missense variants cannot currently be classified as pathogenic or benign. Deficiency in human 5,10-methylenetetrahydrofolate reductase (MTHFR), the most common inherited disorder of folate metabolism, is caused primarily by rare missense variants. Further complicating variant interpretation, variant impacts often depend on environment. An important example of this phenomenon is the MTHFR variant p.Ala222Val (c.665C>T), which is carried by half of all humans and has a phenotypic impact that depends on dietary folate. Here we describe the results of 98,336 variant functional-impact assays, covering nearly all possible MTHFR amino acid substitutions in four folinate environments, each in the presence and absence of p.Ala222Val. The resulting atlas of MTHFR variant effects reveals many complex dependencies on both folinate and p.Ala222Val. MTHFR atlas scores can distinguish pathogenic from benign variants and, among individuals with severe MTHFR deficiency, correlate with age of disease onset. Providing a powerful tool for understanding structure-function relationships, the atlas suggests a role for a disordered loop in retaining cofactor at the active site and identifies variants that enable escape of inhibition by S-adenosylmethionine. Thus, a model based on eight MTHFR variant effect maps illustrates how shifting landscapes of environment- and genetic-background-dependent missense variation can inform our clinical, structural, and functional understanding of MTHFR deficiency.


Asunto(s)
Metilenotetrahidrofolato Reductasa (NADPH2)/genética , Mutación Missense , Sustitución de Aminoácidos , Análisis Mutacional de ADN , Diploidia , Biblioteca de Genes , Genotipo , Humanos , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Metilenotetrahidrofolato Reductasa (NADPH2)/fisiología , Saccharomyces cerevisiae/genética
3.
J Inherit Metab Dis ; 46(3): 421-435, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36371683

RESUMEN

Methylmalonyl-coenzyme A (CoA) mutase (MMUT)-type methylmalonic aciduria is a rare inherited metabolic disease caused by the loss of function of the MMUT enzyme. Patients develop symptoms resembling those of primary mitochondrial disorders, but the underlying causes of mitochondrial dysfunction remain unclear. Here, we examined environmental and genetic interactions in MMUT deficiency using a combination of computational modeling and cellular models to decipher pathways interacting with MMUT. Immortalized fibroblast (hTERT BJ5ta) MMUT-KO (MUTKO) clones displayed a mild mitochondrial impairment in standard glucose-based medium, but they did not to show increased reliance on respiratory metabolism nor reduced growth or viability. Consistently, our modeling predicted MUTKO specific growth phenotypes only for lower extracellular glutamine concentrations. Indeed, two of three MMUT-deficient BJ5ta cell lines showed a reduced viability in glutamine-free medium. Further, growth on 183 different carbon and nitrogen substrates identified increased NADH (nicotinamide adenine dinucleotide) metabolism of BJ5ta and HEK293 MUTKO cells compared with controls on purine- and glutamine-based substrates. With this knowledge, our modeling predicted 13 reactions interacting with MMUT that potentiate an effect on growth, primarily those of secondary oxidation of propionyl-CoA, oxidative phosphorylation and oxygen diffusion. Of these, we validated 3-hydroxyisobutytyl-CoA hydrolase (HIBCH) in the secondary propionyl-CoA oxidation pathway. Altogether, these results suggest compensation for the loss of MMUT function by increasing anaplerosis through glutamine or by diverting flux away from MMUT through the secondary propionyl-CoA oxidation pathway, which may have therapeutic relevance.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Enfermedades Mitocondriales , Humanos , Células HEK293 , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Enfermedades Mitocondriales/metabolismo , Metilmalonil-CoA Mutasa , Ácido Metilmalónico/metabolismo
4.
J Inherit Metab Dis ; 46(3): 406-420, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36680553

RESUMEN

Vitamin B12 (cobalamin, Cbl) is required as a cofactor by two human enzymes, 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) and methylmalonyl-CoA mutase (MMUT). Within the body, a vast array of transporters, enzymes and chaperones are required for the generation and delivery of these cofactor forms. How they perform these functions is dictated by the structure and interactions of the proteins involved, the molecular bases of which are only now being elucidated. In this review, we highlight recent insights into human Cbl metabolism and address open questions in the field by employing a protein structure and interactome based perspective. We discuss how three very similar proteins-haptocorrin, intrinsic factor and transcobalamin-exploit slight structural differences and unique ligand receptor interactions to effect selective Cbl absorption and internalisation. We describe recent advances in the understanding of how endocytosed Cbl is transported across the lysosomal membrane and the implications of the recently solved ABCD4 structure. We detail how MMACHC and MMADHC cooperate to modify and target cytosolic Cbl to the client enzymes MTR and MMUT using ingenious modifications to an ancient nitroreductase fold, and how MTR and MMUT link with their accessory enzymes to sustainably harness the supernucleophilic potential of Cbl. Finally, we provide an outlook on how future studies may combine structural and interactome based approaches and incorporate knowledge of post-translational modifications to bring further insights.


Asunto(s)
Metilmalonil-CoA Mutasa , Vitamina B 12 , Humanos , Vitamina B 12/metabolismo , Metilmalonil-CoA Mutasa/metabolismo , Transporte Biológico , Chaperonas Moleculares , Transportadoras de Casetes de Unión a ATP/metabolismo , Oxidorreductasas/metabolismo
5.
Hum Genet ; 141(7): 1253-1267, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34796408

RESUMEN

Pathogenic variants in MMAB cause cblB-type methylmalonic aciduria, an autosomal-recessive disorder of propionate metabolism. MMAB encodes ATP:cobalamin adenosyltransferase, using ATP and cob(I)alamin to create 5'-deoxyadenosylcobalamin (AdoCbl), the cofactor of methylmalonyl-CoA mutase (MMUT). We identified bi-allelic disease-causing variants in MMAB in 97 individuals with cblB-type methylmalonic aciduria, including 33 different and 16 novel variants. Missense changes accounted for the most frequent pathogenic alleles (p.(Arg186Trp), N = 57; p.(Arg191Trp), N = 19); while c.700C > T (p.(Arg234*)) was the most frequently identified truncating variant (N = 14). In fibroblasts from 76 affected individuals, the ratio of propionate incorporation in the presence and absence of hydroxocobalamin (PI ratio) was associated to clinical cobalamin responsiveness and later disease onset. We found p.(Arg234*) to be associated with cobalamin responsiveness in vitro, and clinically with later onset; p.(Arg186Trp) and p.(Arg191Trp) showed no clear cobalamin responsiveness and early onset. Mapping these and novel variants onto the MMAB structure revealed their potential to affect ATP and AdoCbl binding. Follow-up biochemical characterization of recombinant MMAB identified its three active sites to be equivalent for ATP binding, determined by fluorescence spectroscopy (Kd = 21 µM) and isothermal calorimetry (Kd = 14 µM), but function as two non-equivalent AdoCbl binding sites (Kd1 = 0.55 µM; Kd2 = 8.4 µM). Ejection of AdoCbl was activated by ATP (Ka = 24 µM), which was sensitized by the presence of MMUT (Ka = 13 µM). This study expands the landscape of pathogenic MMAB variants, provides association of in vitro and clinical responsiveness, and facilitates insight into MMAB function, enabling better disease understanding.


Asunto(s)
Transferasas Alquil y Aril , Errores Innatos del Metabolismo de los Aminoácidos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Transferasas Alquil y Aril/metabolismo , Alelos , Errores Innatos del Metabolismo de los Aminoácidos/genética , Errores Innatos del Metabolismo de los Aminoácidos/patología , Humanos , Mutación , Propionatos , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Vitamina B 12/metabolismo
6.
Cell Mol Life Sci ; 78(21-22): 6851-6867, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34524466

RESUMEN

Mitochondria-the intracellular powerhouse in which nutrients are converted into energy in the form of ATP or heat-are highly dynamic, double-membraned organelles that harness a plethora of cellular functions that sustain energy metabolism and homeostasis. Exciting new discoveries now indicate that the maintenance of this ever changing and functionally pleiotropic organelle is particularly relevant in terminally differentiated cells that are highly dependent on aerobic metabolism. Given the central role in maintaining metabolic and physiological homeostasis, dysregulation of the mitochondrial network might therefore confer a potentially devastating vulnerability to high-energy requiring cell types, contributing to a broad variety of hereditary and acquired diseases. In this Review, we highlight the biological functions of mitochondria-localized enzymes from the perspective of understanding-and potentially reversing-the pathophysiology of inherited disorders affecting the homeostasis of the mitochondrial network and cellular metabolism. Using methylmalonic acidemia as a paradigm of complex mitochondrial dysfunction, we discuss how mitochondrial directed-signaling circuitries govern the homeostasis and physiology of specialized cell types and how these may be disturbed in disease. This Review also provides a critical analysis of affected tissues, potential molecular mechanisms, and novel cellular and animal models of methylmalonic acidemia which are being used to develop new therapeutic options for this disease. These insights might ultimately lead to new therapeutics, not only for methylmalonic acidemia, but also for other currently intractable mitochondrial diseases, potentially transforming our ability to regulate homeostasis and health.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Mitocondrias/metabolismo , Enfermedades Mitocondriales/metabolismo , Mitofagia/fisiología , Animales , Metabolismo Energético/fisiología , Homeostasis/fisiología , Humanos , Orgánulos/metabolismo , Transducción de Señal/fisiología
7.
Mol Genet Metab ; 130(3): 179-182, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32414565

RESUMEN

MTHFD1 is a trifunctional protein containing 10-formyltetrahydrofolate synthetase, 5,10-methenyltetrahydrofolate cyclohydrolase and 5,10-methylenetetrahydrofolate dehydrogenase activities. It is encoded by MTHFD1 and functions in the cytoplasmic folate cycle where it is involved in de novo purine synthesis, synthesis of thymidylate and remethylation of homocysteine to methionine. Since the first reported case of severe combined immunodeficiency resulting from MTHFD1 mutations, seven additional patients ascertained through molecular analysis have been reported with variable phenotypes, including megaloblastic anemia, atypical hemolytic uremic syndrome, hyperhomocysteinemia, microangiopathy, infections and autoimmune diseases. We determined the level of MTHFD1 expression and dehydrogenase specific activity in cell extracts from cultured fibroblasts of three previously reported patients, as well as a patient with megaloblastic anemia and recurrent infections with compound heterozygous MTHFD1 variants that were predicted to be deleterious. MTHFD1 protein expression determined by Western blotting in fibroblast extracts from three of the patients was markedly decreased compared to expression in wild type cells (between 4.8 and 14.3% of mean control values). MTHFD1 expression in the fourth patient was approximately 44% of mean control values. There was no detectable methylenetetrahydrofolate dehydrogenase specific activity in extracts from any of the four patients. This is the first measurement of MTHFD1 function in MTHFD1 deficient patients and confirms the previous molecular diagnoses.


Asunto(s)
Fibroblastos/patología , Deficiencia de Ácido Fólico/diagnóstico , Metilenotetrahidrofolato Deshidrogenasa (NADP)/genética , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Antígenos de Histocompatibilidad Menor/genética , Antígenos de Histocompatibilidad Menor/metabolismo , Mutación , Inmunodeficiencia Combinada Grave/diagnóstico , Estudios de Casos y Controles , Células Cultivadas , Fibroblastos/metabolismo , Deficiencia de Ácido Fólico/genética , Deficiencia de Ácido Fólico/metabolismo , Humanos , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/metabolismo
8.
J Inherit Metab Dis ; 42(4): 673-685, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30693532

RESUMEN

Vitamin B12 (cobalamin, Cbl) is a nutrient essential to human health. Due to its complex structure and dual cofactor forms, Cbl undergoes a complicated series of absorptive and processing steps before serving as cofactor for the enzymes methylmalonyl-CoA mutase and methionine synthase. Methylmalonyl-CoA mutase is required for the catabolism of certain (branched-chain) amino acids into an anaplerotic substrate in the mitochondrion, and dysfunction of the enzyme itself or in production of its cofactor adenosyl-Cbl result in an inability to successfully undergo protein catabolism with concomitant mitochondrial energy disruption. Methionine synthase catalyzes the methyl-Cbl dependent (re)methylation of homocysteine to methionine within the methionine cycle; a reaction required to produce this essential amino acid and generate S-adenosylmethionine, the most important cellular methyl-donor. Disruption of methionine synthase has wide-ranging implications for all methylation-dependent reactions, including epigenetic modification, but also for the intracellular folate pathway, since methionine synthase uses 5-methyltetrahydrofolate as a one-carbon donor. Folate-bound one-carbon units are also required for deoxythymidine monophosphate and de novo purine synthesis; therefore, the flow of single carbon units to each of these pathways must be regulated based on cellular needs. This review provides an overview on Cbl metabolism with a brief description of absorption and intracellular metabolic pathways. It also provides a description of folate-mediated one-carbon metabolism and its intersection with Cbl at the methionine cycle. Finally, a summary of recent advances in understanding of how both pathways are regulated is presented.


Asunto(s)
Deficiencia de Ácido Fólico/metabolismo , Deficiencia de Vitamina B 12/metabolismo , 5-Metiltetrahidrofolato-Homocisteína S-Metiltransferasa/metabolismo , Animales , Ácido Fólico/farmacología , Humanos , Metilmalonil-CoA Mutasa/metabolismo , Vitamina B 12/farmacología
9.
J Inherit Metab Dis ; 42(2): 333-352, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30773687

RESUMEN

AIM: To explore the clinical presentation, course, treatment and impact of early treatment in patients with remethylation disorders from the European Network and Registry for Homocystinurias and Methylation Defects (E-HOD) international web-based registry. RESULTS: This review comprises 238 patients (cobalamin C defect n = 161; methylenetetrahydrofolate reductase deficiency n = 50; cobalamin G defect n = 11; cobalamin E defect n = 10; cobalamin D defect n = 5; and cobalamin J defect n = 1) from 47 centres for whom the E-HOD registry includes, as a minimum, data on medical history and enrolment visit. The duration of observation was 127 patient years. In 181 clinically diagnosed patients, the median age at presentation was 30 days (range 1 day to 42 years) and the median age at diagnosis was 3.7 months (range 3 days to 56 years). Seventy-five percent of pre-clinically diagnosed patients with cobalamin C disease became symptomatic within the first 15 days of life. Total homocysteine (tHcy), amino acids and urinary methylmalonic acid (MMA) were the most frequently assessed disease markers; confirmatory diagnostics were mainly molecular genetic studies. Remethylation disorders are multisystem diseases dominated by neurological and eye disease and failure to thrive. In this cohort, mortality, thromboembolic, psychiatric and renal disease were rarer than reported elsewhere. Early treatment correlates with lower overall morbidity but is less effective in preventing eye disease and cognitive impairment. The wide variation in treatment hampers the evaluation of particular therapeutic modalities. CONCLUSION: Treatment improves the clinical course of remethylation disorders and reduces morbidity, especially if started early, but neurocognitive and eye symptoms are less responsive. Current treatment is highly variable. This study has the inevitable limitations of a retrospective, registry-based design.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Homocistinuria/metabolismo , Metilenotetrahidrofolato Reductasa (NADPH2)/deficiencia , Espasticidad Muscular/metabolismo , Vitamina B 12/metabolismo , Adolescente , Adulto , Edad de Inicio , Niño , Preescolar , Estudios Transversales , Progresión de la Enfermedad , Europa (Continente) , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Metilación , Metilenotetrahidrofolato Reductasa (NADPH2)/metabolismo , Ácido Metilmalónico/orina , Fenotipo , Embarazo , Trastornos Psicóticos/metabolismo , Sistema de Registros , Estudios Retrospectivos , Adulto Joven
10.
J Biol Chem ; 292(28): 11980-11991, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28572511

RESUMEN

Vitamin B12 (cobalamin (Cbl)), in the cofactor forms methyl-Cbl and adenosyl-Cbl, is required for the function of the essential enzymes methionine synthase and methylmalonyl-CoA mutase, respectively. Cbl enters mammalian cells by receptor-mediated endocytosis of protein-bound Cbl followed by lysosomal export of free Cbl to the cytosol and further processing to these cofactor forms. The integral membrane proteins LMBD1 and ABCD4 are required for lysosomal release of Cbl, and mutations in the genes LMBRD1 and ABCD4 result in the cobalamin metabolism disorders cblF and cblJ. We report a new (fifth) patient with the cblJ disorder who presented at 7 days of age with poor feeding, hypotonia, methylmalonic aciduria, and elevated plasma homocysteine and harbored the mutations c.1667_1668delAG [p.Glu556Glyfs*27] and c.1295G>A [p.Arg432Gln] in the ABCD4 gene. Cbl cofactor forms are decreased in fibroblasts from this patient but could be rescued by overexpression of either ABCD4 or, unexpectedly, LMBD1. Using a sensitive live-cell FRET assay, we demonstrated selective interaction between ABCD4 and LMBD1 and decreased interaction when ABCD4 harbored the patient mutations p.Arg432Gln or p.Asn141Lys or when artificial mutations disrupted the ATPase domain. Finally, we showed that ABCD4 lysosomal targeting depends on co-expression of, and interaction with, LMBD1. These data broaden the patient and mutation spectrum of cblJ deficiency, establish a sensitive live-cell assay to detect the LMBD1-ABCD4 interaction, and confirm the importance of this interaction for proper intracellular targeting of ABCD4 and cobalamin cofactor synthesis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/genética , Errores Innatos del Metabolismo de los Aminoácidos/genética , Lisosomas/metabolismo , Errores Innatos del Metabolismo/genética , Modelos Moleculares , Mutación , Proteínas de Transporte Nucleocitoplasmático/genética , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/deficiencia , Transportadoras de Casetes de Unión a ATP/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Sustitución de Aminoácidos , Dominio Catalítico , Línea Celular Transformada , Células Cultivadas , Células HeLa , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Lisosomas/enzimología , Lisosomas/patología , Errores Innatos del Metabolismo/metabolismo , Errores Innatos del Metabolismo/patología , Simulación del Acoplamiento Molecular , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/deficiencia , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Transporte de Proteínas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Homología Estructural de Proteína , Vitamina B 12/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA