Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 21(1): 371, 2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34384382

RESUMEN

BACKGROUND: The Orchid family is the largest families of the monocotyledons and an economically important ornamental plant worldwide. Given the pivotal role of this plant to humans, botanical researchers and breeding communities should have access to valuable genomic and transcriptomic information of this plant. Previously, we established OrchidBase, which contains expressed sequence tags (ESTs) from different tissues and developmental stages of Phalaenopsis as well as biotic and abiotic stress-treated Phalaenopsis. The database includes floral transcriptomic sequences from 10 orchid species across all the five subfamilies of Orchidaceae. DESCRIPTION: Recently, the whole-genome sequences of Apostasia shenzhenica, Dendrobium catenatum, and Phalaenopsis equestris were de novo assembled and analyzed. These datasets were used to develop OrchidBase 4.0, including genomic and transcriptomic data for these three orchid species. OrchidBase 4.0 offers information for gene annotation, gene expression with fragments per kilobase of transcript per millions mapped reads (FPKM), KEGG pathways and BLAST search. In addition, assembled genome sequences and location of genes and miRNAs could be visualized by the genome browser. The online resources in OrchidBase 4.0 can be accessed by browsing or using BLAST. Users can also download the assembled scaffold sequences and the predicted gene and protein sequences of these three orchid species. CONCLUSIONS: OrchidBase 4.0 is the first database that contain the whole-genome sequences and annotations of multiple orchid species. OrchidBase 4.0 is available at http://orchidbase.itps.ncku.edu.tw/.


Asunto(s)
Bases de Datos Genéticas , Orchidaceae/genética , Genoma de Planta
2.
Plant Cell Physiol ; 54(2): e7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23314755

RESUMEN

Both floral development and evolutionary trends of orchid flowers have long attracted the interest of biologists. However, expressed sequences derived from the flowers of other orchid subfamilies are still scarce except for a few species in Epidendroideae. In order to broadly increase our scope of Orchidaceae genetic information, we updated the OrchidBase to version 2.0 which has 1,562,071 newly added floral non-redundant transcribed sequences (unigenes) collected comprehensively from 10 orchid species across five subfamilies of Orchidaceae. A total of 662,671,362 reads were obtained by using next-generation sequencing (NGS) Solexa Illumina sequencers. After assembly, on average 156,207 unigenes were generated for each species. The average length of a unigene is 347 bp. We made a detailed annotation including general information, relative expression level, gene ontology (GO), KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway mapping and gene network prediction. The online resources for putative annotation can be searched either by text or by using BLAST, and the results can be explored on the website and downloaded. We have re-designed the user interface in the new version. Users can enter the Phalaenopsis transcriptome or Orchidaceae floral transcriptome to browse or search the unigenes. OrchidBase 2.0 is freely available at http://orchidbase.itps.ncku.edu.tw/.


Asunto(s)
Bases de Datos Genéticas , Flores/metabolismo , Genes de Plantas , Orchidaceae/metabolismo , Programas Informáticos , Transcriptoma , Etiquetas de Secuencia Expresada , Flores/genética , Biblioteca de Genes , Internet , Anotación de Secuencia Molecular , Orchidaceae/clasificación , Orchidaceae/genética , Filogenia
3.
BMC Genomics ; 12: 360, 2011 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-21749684

RESUMEN

BACKGROUND: Orchids are one of the most diversified angiosperms, but few genomic resources are available for these non-model plants. In addition to the ecological significance, Phalaenopsis has been considered as an economically important floriculture industry worldwide. We aimed to use massively parallel 454 pyrosequencing for a global characterization of the Phalaenopsis transcriptome. RESULTS: To maximize sequence diversity, we pooled RNA from 10 samples of different tissues, various developmental stages, and biotic- or abiotic-stressed plants. We obtained 206,960 expressed sequence tags (ESTs) with an average read length of 228 bp. These reads were assembled into 8,233 contigs and 34,630 singletons. The unigenes were searched against the NCBI non-redundant (NR) protein database. Based on sequence similarity with known proteins, these analyses identified 22,234 different genes (E-value cutoff, e-7). Assembled sequences were annotated with Gene Ontology, Gene Family and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Among these annotations, over 780 unigenes encoding putative transcription factors were identified. CONCLUSION: Pyrosequencing was effective in identifying a large set of unigenes from Phalaenopsis. The informative EST dataset we developed constitutes a much-needed resource for discovery of genes involved in various biological processes in Phalaenopsis and other orchid species. These transcribed sequences will narrow the gap between study of model organisms with many genomic resources and species that are important for ecological and evolutionary studies.


Asunto(s)
Etiquetas de Secuencia Expresada , Estudios de Asociación Genética , Orchidaceae/genética , Mapeo Contig , Bases de Datos de Proteínas , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Análisis de Secuencia de ADN , Factores de Transcripción/genética
4.
Plant Cell Physiol ; 52(2): 238-43, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21245031

RESUMEN

Orchids are one of the most ecological and evolutionarily significant plants, and the Orchidaceae is one of the most abundant families of the angiosperms. Genetic databases will be useful not only for gene discovery but also for future genomic annotation. For this purpose, OrchidBase was established from 37,979,342 sequence reads collected from 11 in-house Phalaenopsis orchid cDNA libraries. Among them, 41,310 expressed sequence tags (ESTs) were obtained by using Sanger sequencing, whereas 37,908,032 reads were obtained by using next-generation sequencing (NGS) including both Roche 454 and Solexa Illumina sequencers. These reads were assembled into 8,501 contigs and 76,116 singletons, resulting in 84,617 non-redundant transcribed sequences with an average length of 459 bp. The analysis pipeline of the database is an automated system written in Perl and C#, and consists of the following components: automatic pre-processing of EST reads, assembly of raw sequences, annotation of the assembled sequences and storage of the analyzed information in SQL databases. A web application was implemented with HTML and a Microsoft .NET Framework C# program for browsing and querying the database, creating dynamic web pages on the client side, analyzing gene ontology (GO) and mapping annotated enzymes to KEGG pathways. The online resources for putative annotation can be searched either by text or by using BLAST, and the results can be explored on the website and downloaded. Consequently, the establishment of OrchidBase will provide researchers with a high-quality genetic resource for data mining and facilitate efficient experimental studies on orchid biology and biotechnology. The OrchidBase database is freely available at http://lab.fhes.tn.edu.tw/est.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Orchidaceae/genética , Minería de Datos , Etiquetas de Secuencia Expresada , Biblioteca de Genes , Internet , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN , Interfaz Usuario-Computador
5.
Sci Rep ; 10(1): 10123, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32572104

RESUMEN

Orchid (Orchidaceae) is one of the largest families in angiosperms and presents exceptional diversity in lifestyle. Their unique reproductive characteristics of orchid are attracted by scientist for centuries. One of the synapomorphies of orchid plants is that their seeds do not contain endosperm. Lipids are used as major energy storage in orchid seeds. However, regulation and mobilization of lipid usage during early seedling (protocorm) stage of orchid is not understood. In this study, we compared transcriptomes from developing Phalaenopsis aphrodite protocorms grown on 1/2-strength MS medium with sucrose. The expression of P. aphrodite MALATE SYNTHASE (PaMLS), involved in the glyoxylate cycle, was significantly decreased from 4 days after incubation (DAI) to 7 DAI. On real-time RT-PCR, both P. aphrodite ISOCITRATE LYASE (PaICL) and PaMLS were down-regulated during protocorm development and suppressed by sucrose treatment. In addition, several genes encoding transcription factors regulating PaMLS expression were identified. A gene encoding homeobox transcription factor (named PaHB5) was involved in positive regulation of PaMLS. This study showed that sucrose regulates the glyoxylate cycle during orchid protocorm development in asymbiotic germination and provides new insights into the transcription factors involved in the regulation of malate synthase expression.


Asunto(s)
Malato Sintasa/genética , Malato Sintasa/metabolismo , Orchidaceae/genética , Metabolismo de los Hidratos de Carbono , Expresión Génica/genética , Regulación de la Expresión Génica de las Plantas/genética , Germinación , Glioxilatos/metabolismo , Orchidaceae/metabolismo , Plantones/crecimiento & desarrollo , Semillas/fisiología , Simbiosis , Factores de Transcripción/genética , Transcriptoma
6.
Gene ; 518(1): 91-100, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23262337

RESUMEN

Orchids are one of the most species rich of all angiosperm families. Their extraordinary floral diversity, especially conspicuous labellum morphology, makes them the successful species during evolution process. Because of the fine and delicate development of the perianth, orchid provides a rich subject for studying developmental biology. However, study on molecular mechanism underling orchid floral development is still in its infancy. In this study, we developed an oligomicroarray containing 14,732 unigenes based on the information of expressed sequence tags derived from Phalaenopsis orchids. We applied the oligomicroarray to compare transcriptome among different types of floral organs including sepal, petal and labellum. We discovered that 173, 11, and 285 unigenes were highly differentially expressed in sepal, petal, and labellum, respectively. These unigenes were annotated with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and transcription factor family. Unigenes involved in energy metabolism, lipid metabolism, and terpenoid metabolism are significantly differentially distributed between labellum and two types of tepal (sepal and petal). Labellum-dominant unigenes encoding MADS-box and sepal-dominant unigenes encoding WRKY transcription factors were also identified. Further studies are required but data suggest that it will be possible to identify genes better adapted to sepal, petal and labellum function. The developed functional genomic tool will narrow the gap between approaches based on model organisms with plenty genomic resources and species that are important for developmental and evolutionary studies.


Asunto(s)
Flores/genética , Perfilación de la Expresión Génica/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Orchidaceae/genética , Metabolismo Energético/genética , Etiquetas de Secuencia Expresada , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Metabolismo de los Lípidos/genética , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Redes y Vías Metabólicas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA