Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(11): e2316553121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437553

RESUMEN

Developing cost-effective and high-performance electrocatalysts for oxygen reduction reaction (ORR) is critical for clean energy generation. Here, we propose an approach to the synthesis of iron phthalocyanine nanotubes (FePc NTs) as a highly active and selective electrocatalyst for ORR. The performance is significantly superior to FePc in randomly aggregated and molecularly dispersed states, as well as the commercial Pt/C catalyst. When FePc NTs are anchored on graphene, the resulting architecture shifts the ORR potentials above the redox potentials of Fe2+/3+ sites. This does not obey the redox-mediated mechanism operative on conventional FePc with a Fe2+-N moiety serving as the active sites. Pourbaix analysis shows that the redox of Fe2+/3+ sites couples with HO- ions transfer, forming a HO-Fe3+-N moiety serving as the ORR active sites under the turnover condition. The chemisorption of ORR intermediates is appropriately weakened on the HO-Fe3+-N moiety compared to the Fe2+-N state and thus is intrinsically more ORR active.

2.
Small ; 19(41): e2302738, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37291982

RESUMEN

Metal-organic frameworks (MOFs) and their derivatives have attracted much attention in the field of photo/electrocatalysis owing to their ultrahigh porosity, tunable properties, and superior coordination ability. Regulating the valence electronic structure and coordination environment of MOFs is an effective way to enhance their intrinsic catalytic performance. Rare earth (RE) elements with 4f orbital occupancy provide an opportunity to evoke electron rearrangement, accelerate charged carrier transport, and synergize the surface adsorption of catalysts. Therefore, the integration of RE with MOFs makes it possible to optimize their electronic structure and coordination environment, resulting in enhanced catalytic performance. In this review, progress in current research on the use of RE-modified MOFs and their derivatives for photo/electrocatalysis is summarized and discussed. First, the theoretical advantages of RE in MOF modification are introduced, with a focus on the roles of 4f orbital occupancy and RE ion organic coordination ligands. Then, the application of RE-modified MOFs and their derivatives in photo/electrocatalysis is systematically discussed. Finally, research challenges, future opportunities, and prospects for RE-MOFs are also discussed.

3.
Small ; 19(5): e2206531, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36445024

RESUMEN

Layered double-hydroxide (LDH) has been considered an important class of electrocatalysts for the oxygen evolution reaction (OER), but the adsorption-desorption behaviors of oxygen intermediates on its surface still remain unsatisfactory. Apart from transition-metal doping to solve this electrocatalytic problem of LDH, rare-earth (RE) species have sprung up as emerging dopants owing to their unique 4f valence-electronic configurations. Herein, the Er is chosen as a RE model to improve OER activity of LDH via constructing nickel foam supported Er-doped NiFe-LDH catalyst (Er-NiFe-LDH@NF). The optimal Er-NiFe-LDH@NF exhibits a low overpotential (191 mV at 10 mA cm-2 ), high turnover frequency (0.588 s-1 ), and low activation energy (36.03 kJ mol-1 ), which are superior to Er-free sample. Electrochemical in situ Raman spectra reveal the facilitated transition of Ni-OH into Ni-OOH for promoted OER kinetics through the Er doping effect. Theoretical calculations demonstrate that the introduction of Er facilitates the spin crossover of valence electrons by optimizing the d band center of NiFe-LDH, which leads to the GO -GHO closer to the optimal activity of the kinetic OER volcano by balancing the bonding strength of *O and *OH. Moreover, the Er-NiFe-LDH@NF presents high practicability in electrochemical water-splitting devices with a low driving potential of and a well-extended driving period.

4.
Angew Chem Int Ed Engl ; 62(52): e202314565, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37943183

RESUMEN

The active-site density, intrinsic activity, and durability of Pd-based materials for oxygen reduction reaction (ORR) are critical to their application in industrial energy devices. This work constructs a series of carbon-based rare-earth (RE) oxides (Gd2 O3 , Sm2 O3 , Eu2 O3 , and CeO2 ) by using RE metal-organic frameworks to tune the ORR performance of the Pd sites through the Pd-REx Oy interface interaction. Taking Pd-Gd2 O3 /C as a representative, it is identified that the strong coupling between Pd and Gd2 O3 induces the formation of the Pd-O-Gd bridge, which triggers charge redistribution of Pd and Gd2 O3 . The screened Pd-Gd2 O3 /C exhibits impressive ORR performance with high onset potential (0.986 VRHE ), half-wave potential (0.877 VRHE ), and excellent stability. Similar ORR results are also found for Pd-Sm2 O3 /C, Pd-Eu2 O3 /C, and Pd-CeO2 /C catalysts. Theoretical analyses reveal that the coupling between Pd and Gd2 O3 promotes electron transfer through the Pd-O-Gd bridge, which induces the antibonding-orbital occupancy of Pd-*OH for the optimization of *OH adsorption in the rate-determining step of ORR. The pH-dependent microkinetic modeling shows that Pd-Gd2 O3 is close to the theoretical optimal activity for ORR, outperforming Pt under the same conditions. By its ascendancy in ORR, the Pd-Gd2 O3 /C exhibits superior performance in Zn-air battery as an air cathode, implying its excellent practicability.

5.
Small ; 18(35): e2204063, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35934833

RESUMEN

Engineering Pt-free catalysts for hydrogen evolution reaction (HER) with high activity and stability is of great significance in electrochemical hydrogen production. Herein, in situ chemical H intercalation into ultrafine Pd to activate this otherwise HER-inferior material to form the ultrafine IrPdH hydride as an efficient and stable HER electrocatalyst is proposed. The formation of PdIrH depends on a new hydrogenation strategy via using ethanol as the hydrogen resource. It is demonstrated that H atoms in IrPdH originate from the OH and CH2  of ethanol, which fills the gap of ethanol as the hydrogen source for the preparation of Pd hydride. Thanks to the incorporation of H/Ir atoms and ultrafine structure, the IrPdH exhibits superior HER activity and stability in the whole pH range. The IrPdH delivers very low overpotentials of 14, 25 and 60 mV at a current density of 10 mA cm-2 respectively in 0.5 m H2 SO4 , 1 m KOH, and 1 m PBS electrolytes, which are much better than those of commercial Pt/C and most reported noble metal electrocatalysts. Theoretical calculations confirm that interstitial hydrogen availably refines the electronic density of Pd and Ir sites, which optimizes the adsorption of *H and leads to the significant enhancement of HER performance.

6.
Chemistry ; 28(32): e202200664, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35384094

RESUMEN

An dual electronic and architectural engineering strategy is a good way to rationally design earth-abundant and highly efficient electrocatalysts of the oxygen evolution reaction (OER) for sustainable hydrogen-based energy devices. Here, a Ce-doped Co9 S8 core-shell nanoneedle array (Ce-Co9 S8 @CC) supported on a carbon cloth has been designed and developed to accelerate the sluggish kinetics of the OER. Profiting from valance alternative Ce doping, a fine core-shell structure and vertically aligned nanoneedle arrayed architecture, Ce-Co9 S8 @CC integrates modulated electronic structure, highly exposed active sites, and multidimensional mass diffusion channels; together, these afford a favorable catalyzed OER. Ce-Co9 S8 @CC exhibits remarkable performance in the OER in an alkaline medium, where the overpotential requires only 242 mV to deliver a current density of 10 mA cm-2 for the OER; this is 70 mV superior to that of Ce-free Co9 S8 catalyst and other counterparts. Good stability and impressive selectivity (nearly 100 % Faradic efficiency) are also demonstrated. When integrated into a two-electrode OER//HER electrolyzer, the as-prepared Ce-Co9 S8 @CC displays a low operation potential of 1.54 V at 10 mA cm-2 and long-term stability, thus demonstrating great potential for economical water electrolysis.

7.
J Am Chem Soc ; 143(29): 11262-11270, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34281338

RESUMEN

Lattice engineering on specific facets of metal catalysts is critically important not only for the enhancement of their catalytic performance but also for deeply understanding the effect of facet-based lattice engineering on catalytic reactions. Here, we develop a facile two-step method for the lattice expansion on specific facets, i.e., Pt(100) and Pt(111), of Pt catalysts. We first prepare the Pd@Pt core-shell nanoparticles exposed with the Pt(100) and Pt(111) facets, respectively, via the Pd-seeded epitaxial growth, and then convert the Pd core to PdH0.43 by hydrogen intercalation. The lattice expansion of the Pd core induces the lattice enlargement of the Pt shell, which can significantly promote the alcohol oxidation reaction (AOR) on both Pt(100) and Pt(111) facets. Impressively, Pt mass specific activities of 32.51 A mgPt-1 for methanol oxidation and 14.86 A mgPt-1 for ethanol oxidation, which are 41.15 and 25.19 times those of the commercial Pt/C catalyst, respectively, have been achieved on the Pt(111) facet. Density functional theory (DFT) calculations indicate that the remarkably improved catalytic performance on both the Pt(100) and the Pt(111) facets through lattice expansion arises from the enhanced OH adsorption. This work not only paves the way for lattice engineering on specific facets of nanomaterials to enhance their electrocatalytic activity but also offers a promising strategy toward the rational design and preparation of highly efficient catalysts.

8.
Small ; 17(17): e2007179, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33709573

RESUMEN

Morphology-control synthesis is an effective means to tailor surface structure of noble-metal nanocrystals, which offers a sensitive knob for tuning their electrocatalytic properties. The functional molecules are often indispensable in the morphology-control synthesis through preferential adsorption on specific crystal facets, or controlling certain crystal growth directions. In this review, the recent progress in morphology-control synthesis of noble-metal nanocrystals assisted by amino-based functional molecules for electrocatalytic applications are focused on. Although a mass of noble-metal nanocrystals with different morphologies have been reported, few review studies have been published related to amino-based molecules assisted control strategy. A full understanding for the key roles of amino-based molecules in the morphology-control synthesis is still necessary. As a result, the explicit roles and mechanisms of various types of amino-based molecules, including amino-based small molecules and amino-based polymers, in morphology-control of noble-metal nanocrystals are summarized and discussed in detail. Also presented in this progress are unique electrocatalytic properties of various shaped noble-metal nanocrystals. Particularly, the optimization of electrocatalytic selectivity induced by specific amino-based functional molecules (e.g., polyallylamine and polyethyleneimine) is highlighted. At the end, some critical prospects, and challenges in terms of amino-based molecules-controlled synthesis and electrocatalytic applications are proposed.


Asunto(s)
Nanopartículas del Metal , Adsorción , Cristalización , Metales
9.
Small ; 17(47): e2100391, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34159714

RESUMEN

With the rapid development of anion-exchange membrane technology and adequate supply of high-performance non-noble metal oxygen reduction reaction (ORR) catalysts in alkaline media, the commercialization of anion exchange membrane fuel cells (AEMFCs) become possible. However, the kinetics of the anodic hydrogen oxidation reaction (HOR) in AEMFCs is significantly decreased compared to the HOR in proton exchange membrane fuel cells (PEMFCs). Therefore, it is urgent to develop HOR catalysts with low price, high activity, and robust stability. However, comprehensive timely reviews on this specific subject do not exist enough yet and it is necessary to update reported major achievements and to point out future investigation directions. In this review, the current reaction mechanisms on HOR are summarized and deeply understood. The debates between the mechanisms are greatly harmonized. Recent advances in developing highly active and stable electrocatalysts for the HOR are reviewed. Moreover, the side reaction control is for the first time systematically introduced. Finally, the challenges and future opportunities in the field of HOR catalysis are outlined.


Asunto(s)
Metales , Protones , Catálisis , Electrodos
10.
Angew Chem Int Ed Engl ; 59(20): 7857-7863, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32022378

RESUMEN

Controllable synthesis of atomically ordered intermetallic nanoparticles (NPs) is crucial to obtain superior electrocatalytic performance for fuel cell reactions, but still remains arduous. Herein, we demonstrate a novel and general hydrogel-freeze drying strategy for the synthesis of reduced graphene oxide (rGO) supported Pt3 M (M=Mn, Cr, Fe, Co, etc.) intermetallic NPs (Pt3 M/rGO-HF) with ultrasmall particle size (about 3 nm) and dramatic monodispersity. The formation of hydrogel prevents the aggregation of graphene oxide and significantly promotes their excellent dispersion, while a freeze-drying can retain the hydrogel derived three-dimensionally (3D) porous structure and immobilize the metal precursors with defined atomic ratio on GO support during solvent sublimation, which is not afforded by traditional oven drying. The subsequent annealing process produces rGO supported ultrasmall ordered Pt3 M intermetallic NPs (≈3 nm) due to confinement effect of 3D porous structure. Such Pt3 M intermetallic NPs exhibit the smallest particle size among the reported ordered Pt-based intermetallic catalysts. A detailed study of the synthesis of ordered intermetallic Pt3 Mn/rGO catalyst is provided as an example of a generally applicable method. This study provides an economical and scalable route for the controlled synthesis of Pt-based intermetallic catalysts, which can pave a way for the commercialization of fuel cell technologies.

11.
Small ; 15(46): e1904210, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31559688

RESUMEN

An efficient and low-cost electrocatalyst for reversible oxygen electrocatalysis is crucial for improving the performance of rechargeable metal-air batteries. Herein, a novel oxygen vacancy-rich 2D porous In-doped CoO/CoP heterostructure (In-CoO/CoP FNS) is designed and developed by a facile free radicals-induced strategy as an effective bifunctional electrocatalyst for rechargeable Zn-air batteries. The electron spin resonance and X-ray absorption near edge spectroscopy provide clear evidence that abundant oxygen vacancies are formed in the interface of In-CoO/CoP FNS. Owing to abundant oxygen vacancies, porous heterostructure, and multiple components, In-CoO/CoP FNS exhibits excellent oxygen reduction reaction activity with a positive half-wave potential of 0.81 V and superior oxygen evolution reaction activity with a low overpotential of 365 mV at 10 mA cm-2 . Moreover, a home-made Zn-air battery with In-CoO/CoP FNS as an air cathode delivers a large power density of 139.4 mW cm-2 , a high energy density of 938 Wh kgZn -1 , and can be steadily cycled over 130 h at 10 mA cm-2 , demonstrating great application potential in rechargeable metal-air batteries.

12.
Small ; 15(28): e1901518, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31140732

RESUMEN

Tailoring composition and morphology of electrocatalysts is of great importance in improving their catalytic performance. Herein, a salt-templated strategy is proposed to construct novel multicomponent Co/Cox My (M = P, N) hybrids with outstanding electrocatalytic performance for the oxygen evolution reaction (OER). The obtained Co/Cox My hybrids present porous sheet-like architecture consisting of many hierarchical secondary building-units. The synthetic strategy depends on a facile and effective dissolution-recrystallization-pyrolysis process under NH3 atmosphere of the precursors, which does not involve any surfactant or long-time hydrothermal pretreatment. That is different from the conventional methods for the synthesis of hierarchical nitrides/phosphides. Benefitting from unique composition/structure-dependent merits, the Co/Cox My hybrids as a typical Mott-Schottky electrocatalyst exhibit good OER performance in an alkaline medium compared with their counterparts, as evidenced by a low overpotential of 334 mV at 10 mA cm-2 and a small Tafel slope of 79.2 mV dec-1 , as well as superior long-term stability. More importantly, the Co/Cox My +Pt/C achieves higher voltaic efficiency and several times longer cycle life than conventional RuO2 +Pt/C catalysts in rechargeable Zn-air batteries. It is envisioned that the present work can provide a new avenue for the development of Mott-Schottky electrocatalysts for sustainable energy storage.

13.
Chemistry ; 25(24): 6226-6232, 2019 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-30860616

RESUMEN

The development of effective and affordable electrocatalysts for the oxygen reduction reaction (ORR) is critical for the renewable-energy technologies. Here, we present a new manganese iron oxide (MnFeO2 ) as a cost-effective material for the ORR with Pt-like electrochemical properties. Pyrolysis of hybrid agar hydrogel on NaCl nanocrystals furnishes a unique structure in which the active MnFeO2 particles are uniformly immobilized in the nitrogen-doped porous carbon aerogels (MnFeO2 /NPC). Nitrogen-doped carbon is introduced to construct porous mass-transfer channels and reduce self-aggregation of the MnFeO2 particles. It is found that the formation of the MnFeO2 phase greatly depends on the pyrolysis temperature. Benefiting from the synergy of MnFeO2 and NPC, the MnFeO2 /NPC can actually be as good as the Pt/C catalyst for the ORR, with an onset-potential of 0.98 V and a half-wave potential of 0.86 V, combined with demonstrating a superior stability and tolerance to methanol.

14.
Chemistry ; 25(31): 7561-7568, 2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-30969448

RESUMEN

The development of high-efficiency electrocatalysts with low costs for the oxygen evolution reaction (OER) is essential, but remains challenging. Herein, a new synthetic process is proposed to prepare Ni3 S4 particles embedded in N,P-codoped honeycomb porous carbon aerogels (Ni3 S4 /N,P-HPC) through a hydrogel approach. The preparation of Ni3 S4 /N,P-HPC begins with the sol-gel polymerization of tripolyphosphate, chitosan, and guanidine polymer that contains metal-binding sites, allowing for the uniform incorporation of Ni ions into the gel matrix, freeze-drying, and subsequent carbonization under an inert atmosphere. This synthesis resolves difficulties in synthesizing the pure Ni3 S4 phase caused by the instability of Ni3 S4 at high temperature, while affording good control of the porous structure and N,P-doping of carbon aerogels. The synergy between the structural advantages of N,P-carbon aerogels (such as easily accessible active sites, high specific surface area, and excellent electron transport) and the intrinsic electrochemical properties of Ni3 S4 result in the outstanding OER performance of Ni3 S4 /N,P-HPC, with overpotentials as low as 0.37 V at 10 mA cm-2 . The work outlined herein offers a simple and effective method for the development of carbon-based electrocatalysts for renewable energy conversion.

15.
Small ; 14(13): e1703940, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29409151

RESUMEN

Exploring highly efficient electrocatalysts is greatly important for the widespread uptake of the fuel cells. However, many newly generated nanocrystals with attractive nanostructures often have extremely limited surface area or large particle-size, which leads them to display limited electrocatalytic performance. Herein, a novel anode catalyst of hollow and porous Pd3 Pt half-shells with rich "active sites" is synthesized by using urea as a guiding surfactant. It is identified that the formation of Pd3 Pt half-shells involves the combination of bubble guiding, in situ deposition of particles and bubble burst. The obtained Pd3 Pt half-shells demonstrate a rich edge area with abundant exposed active sites and surface defects, indicating great potential for the electrocatalysis. When used as an electrocatalyst, the Pd3 Pt half-shells exhibit remarkably improved electrocatalytic performance for formic acid oxidation (FAO), where it promotes the dehydrogenation process of FAO by suppressing the formation of poisonous species COads via the electronic effect and ensemble effect.

16.
J Am Chem Soc ; 139(11): 4123-4129, 2017 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-28215081

RESUMEN

Indium-oxide (In2O3) nanobelts coated by a 5-nm-thick carbon layer provide an enhanced photocatalytic reduction of CO2 to CO and CH4, yielding CO and CH4 evolution rates of 126.6 and 27.9 µmol h-1, respectively, with water as reductant and Pt as co-catalyst. The carbon coat promotes the absorption of visible light, improves the separation of photoinduced electron-hole pairs, increases the chemisorption of CO2, makes more protons from water splitting participate in CO2 reduction, and thereby facilitates the photocatalytic reduction of CO2 to CO and CH4.

17.
Chemistry ; 23(66): 16871-16876, 2017 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-28940811

RESUMEN

Ultrathin Pt-based nanowires are considered as promising electrocatalysts owing to their high atomic utilization efficiency and structural robustness. Moreover, integration of Pt-based nanowires with graphene oxide (GO) could further increase the electrocatalytic performance, yet remains challenging to date. Herein, for the first time we demonstrate the in situ synthesis of ultrathin PtCu nanowires grown over reduced GO (PtCu-NWs/rGO) by a one-pot hydrothermal approach with the aid of amine-terminated poly(N-isopropyl acrylamide) (PNIPAM-NH2 ). The judicious selection of PNIPAM-NH2 facilitates the in situ nucleation and anisotropic growth of nanowires on the rGO surface and oriented attachment mechanism accounts for the formation of PtCu ultrathin nanowires. Owing to the synergy between PtCu NWs and rGO support, the PtCu-NWs/rGO outperforms the rGO supported PtCu nanoparticles (PtCu-NPs/rGO), PtCu-NWs, and commercial Pt/C toward the oxygen reduction reaction (ORR) with higher activity and better stability, making it a promising cathodic electrocatalyst for both fuel cells and metal-air cells. Moreover, the present synthetic strategy could inspire the future design of other metal alloy nanowires/carbon hybrid catalysts.

18.
Nano Lett ; 16(10): 6516-6522, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27599048

RESUMEN

The commercialization of Zn-air batteries has been impeded by the lack of low-cost, highly active, and durable catalysts that act independently for oxygen electrochemical reduction and evolution. Here, we demonstrate excellent performance of NiCo nanoparticles anchored on porous fibrous carbon aerogels (NiCo/PFC aerogels) as bifunctional catalysts toward the Zn-air battery. This material is designed and synthesized by a novel K2Ni(CN)4/K3Co(CN)6-chitosan hydrogel-derived method. The outstanding performance of NiCo/PFC aerogels is confirmed as a superior air-cathode catalyst for a rechargeable Zn-air battery. At a discharge-charge current density of 10 mA cm-2, the NiCo/PFC aerogels enable a Zn-air battery to cycle steadily up to 300 cycles for 600 h with only a small increase in the round-trip overpotential, notably outperforming the more costly Pt/C+IrO2 mixture catalysts (60 cycles for 120 h). With the simplicity of the synthetic method and the outstanding electrocatalytic performance, the NiCo/PFC aerogels are promising electrocatalysts for Zn-air batteries.

19.
Nano Lett ; 16(12): 7836-7841, 2016 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-27960482

RESUMEN

NASICON (Na+ super ionic conductor) structures of NaxMV(PO4)3 (M = Mn, Fe, Ni) were prepared, characterized by aberration-corrected STEM and synchrotron radiation, and demonstrated to be durable cathode materials for rechargeable sodium-ion batteries. In Na4MnV(PO4)3, two redox couples of Mn3+/Mn2+ and V4+/V3+ are accessed with two voltage plateaus located at 3.6 and 3.3 V and a capacity of 101 mAh g-1 at 1 C. Furthermore, the Na4MnV(PO4)3 cathode delivers a high initial efficiency of 97%, long durability over 1000 cycles, and good rate performance to 10 C. The robust framework structure and stable electrochemical performance makes it a reliable cathode materials for sodium-ion batteries.

20.
Angew Chem Int Ed Engl ; 56(33): 9901-9905, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28666066

RESUMEN

Electrocatalysts for both the oxygen reduction and evolution reactions (ORR and OER) are vital for the performances of rechargeable metal-air batteries. Herein, we report an advanced bifunctional oxygen electrocatalyst consisting of porous metallic nickel-iron nitride (Ni3 FeN) supporting ordered Fe3 Pt intermetallic nanoalloy. In this hybrid catalyst, the bimetallic nitride Ni3 FeN mainly contributes to the high activity for the OER while the ordered Fe3 Pt nanoalloy contributes to the excellent activity for the ORR. Robust Ni3 FeN-supported Fe3 Pt catalysts show superior catalytic performance to the state-of-the-art ORR catalyst (Pt/C) and OER catalyst (Ir/C). The Fe3 Pt/Ni3 FeN bifunctional catalyst enables Zn-air batteries to achieve a long-term cycling performance of over 480 h at 10 mA cm-2 with high efficiency. The extraordinarily high performance of the Fe3 Pt/Ni3 FeN bifunctional catalyst makes it a very promising air cathode in alkaline electrolyte.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA