Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34638579

RESUMEN

Parkinson's disease (PD) is a degenerative disease that can cause motor, cognitive, and behavioral disorders. The treatment strategies being developed are based on the typical pathologic features of PD, including the death of dopaminergic (DA) neurons in the substantia nigra of the midbrain and the accumulation of α-synuclein in neurons. Peiminine (PMN) is an extract of Fritillaria thunbergii Miq that has antioxidant and anti-neuroinflammatory effects. We used Caenorhabditis elegans and SH-SY5Y cell models of PD to evaluate the neuroprotective potential of PMN and address its corresponding mechanism of action. We found that pretreatment with PMN reduced reactive oxygen species production and DA neuron degeneration caused by exposure to 6-hydroxydopamine (6-OHDA), and therefore significantly improved the DA-mediated food-sensing behavior of 6-OHDA-exposed worms and prolonged their lifespan. PMN also diminished the accumulation of α-synuclein in transgenic worms and transfected cells. In our study of the mechanism of action, we found that PMN lessened ARTS-mediated degradation of X-linked inhibitor of apoptosis (XIAP) by enhancing the expression of PINK1/parkin. This led to reduced 6-OHDA-induced apoptosis, enhanced activity of the ubiquitin-proteasome system, and increased autophagy, which diminished the accumulation of α-synuclein. The use of small interfering RNA to down-regulate parkin reversed the benefits of PMN in the PD models. Our findings suggest PMN as a candidate compound worthy of further evaluation for the treatment of PD.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Cevanas/farmacología , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , alfa-Sinucleína/metabolismo , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/metabolismo , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Degeneración Nerviosa/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Sustancia Negra/metabolismo , Ubiquitina/metabolismo
2.
Int J Mol Sci ; 21(12)2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32585871

RESUMEN

The movement disorder Parkinson's disease (PD) is the second most frequently diagnosed neurodegenerative disease, and is associated with aging, the environment, and genetic factors. The intracellular aggregation of α-synuclein and the loss of dopaminergic neurons in the substantia nigra pars compacta are the pathological hallmark of PD. At present, there is no successful treatment for PD. Maackiain (MK) is a flavonoid extracted from dried roots of Sophora flavescens Aiton. MK has emerged as a novel agent for PD treatment that acts by inhibiting monoamine oxidase B. In this study, we assessed the neuroprotective potential of MK in Caenorhabditis elegans and investigated possible mechanism of this neuroprotection in the human SH-SY5Y cell line. We found that MK significantly reduced dopaminergic neuron damage in 6-hydroxydopamine (6-OHDA)-exposed worms of the BZ555 strain, with corresponding improvements in food-sensing behavior and life-span. In transgenic worms of strain NL5901 treated with 0.25 mM MK, the accumulation of α-synuclein was diminished by 27% (p < 0.01) compared with that in untreated worms. Moreover, in worms and the SH-SY5Y cell line, we confirmed that the mechanism of MK-mediated protection against PD pathology may include blocking apoptosis, enhancing the ubiquitin-proteasome system, and augmenting autophagy by increasing PINK1/parkin expression. The use of small interfering RNA to downregulate parkin expression in vivo and in vitro could reverse the benefits of MK in PD models. MK may have considerable therapeutic applications in PD.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Neuroblastoma/tratamiento farmacológico , Oxidopamina/toxicidad , Enfermedad de Parkinson/tratamiento farmacológico , Proteínas Quinasas/metabolismo , Pterocarpanos/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/toxicidad , Adrenérgicos/toxicidad , Animales , Apoptosis , Autofagia , Caenorhabditis elegans/crecimiento & desarrollo , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Neuroblastoma/etiología , Neuroblastoma/patología , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/patología , Proteínas Quinasas/genética , Ubiquitina-Proteína Ligasas/genética
3.
Blood ; 127(10): 1336-45, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26679863

RESUMEN

L5, the most electronegative and atherogenic subfraction of low-density lipoprotein (LDL), induces platelet activation. We hypothesized that plasma L5 levels are increased in acute ischemic stroke patients and examined whether lectin-like oxidized LDL receptor-1 (LOX-1), the receptor for L5 on endothelial cells and platelets, plays a critical role in stroke. Because amyloid ß (Aß) stimulates platelet aggregation, we studied whether L5 and Aß function synergistically to induce prothrombotic pathways leading to stroke. Levels of plasma L5, serum Aß, and platelet LOX-1 expression were significantly higher in acute ischemic stroke patients than in controls without metabolic syndrome (P < .01). In mice subjected to focal cerebral ischemia, L5 treatment resulted in larger infarction volumes than did phosphate-buffered saline treatment. Deficiency or neutralizing of LOX-1 reduced infarct volume up to threefold after focal cerebral ischemia in mice, illustrating the importance of LOX-1 in stroke injury. In human platelets, L5 but not L1 (the least electronegative LDL subfraction) induced Aß release via IκB kinase 2 (IKK2). Furthermore, L5+Aß synergistically induced glycoprotein IIb/IIIa receptor activation; phosphorylation of IKK2, IκBα, p65, and c-Jun N-terminal kinase 1; and platelet aggregation. These effects were blocked by inhibiting IKK2, LOX-1, or nuclear factor-κB (NF-κB). Injecting L5+Aß shortened tail-bleeding time by 50% (n = 12; P < .05 vs L1-injected mice), which was prevented by the IKK2 inhibitor. Our findings suggest that, through LOX-1, atherogenic L5 potentiates Aß-mediated platelet activation, platelet aggregation, and hemostasis via IKK2/NF-κB signaling. L5 elevation may be a risk factor for cerebral atherothrombosis, and downregulating LOX-1 and inhibiting IKK2 may be novel antithrombotic strategies.


Asunto(s)
Isquemia Encefálica/sangre , Lipoproteínas LDL/sangre , Agregación Plaquetaria , Accidente Cerebrovascular/sangre , Péptidos beta-Amiloides/sangre , Animales , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Quinasa I-kappa B/metabolismo , Arteriosclerosis Intracraneal/sangre , Arteriosclerosis Intracraneal/patología , Trombosis Intracraneal/sangre , Trombosis Intracraneal/patología , Masculino , Ratones , Ratones Noqueados , Receptores Depuradores de Clase E/metabolismo , Transducción de Señal , Accidente Cerebrovascular/patología
4.
Chem Res Toxicol ; 27(11): 1958-66, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25271104

RESUMEN

Carnosic acid (CA), a diterpene found in the rosemary (Rosmarinus officinalis), has been reported to have a neuroprotective effect. Glutathione S-transferase (GST) P (GSTP) is a phase II detoxifying enzyme that provides a neuroprotective effect. The aim of this study was to explore whether the neuroprotective effect of CA is via an upregulation of GSTP expression and the possible signaling pathways involved. SH-SY5Y cells were pretreated with 1 µM CA followed by treatment with 100 µM 6-hydroxydopamine (6-OHDA). Both immunoblotting and enzyme activity results show that CA also induced protein expression and enzyme activity of GSTP. Moreover, CA significantly increased the phosphorylation of phosphatidylinositol 3-kinase (PI3K)/Akt, the nuclear translocation of p65, but not mitogen-activated protein kinases (p < 0.05). Pretreatment with LY294002 (a PI3K/Akt inhibitor) suppressed the CA-induced phosphorylation of IκB kinase (IKK) and IκBα, p65 nuclear translocation, and nuclear factor-kappa B (NF-κB)-DNA binding activity as well as GSTP protein expression. Furthermore, CA attenuated 6-OHDA-induced caspase 3 activation, and cell death was reversed by GSTP siRNA or LY294002 treatment. Additionally, male Wistar rats with lesions induced by 6-OHDA treatment in the right striatum responded to treatment with CA, which significantly reversed the reduction in GSTP protein expression that resulted from lesioning. We suggest that CA prevents 6-OHDA-induced apoptosis through an increase in GSTP expression via activation of the PI3K/Akt/NF-κB pathway. Therefore, CA may be a promising candidate for use in the prevention of Parkinson's disease.


Asunto(s)
Abietanos/farmacología , Gutatión-S-Transferasa pi/biosíntesis , FN-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/prevención & control , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Vegetales/farmacología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Abietanos/uso terapéutico , Animales , Western Blotting , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayo de Cambio de Movilidad Electroforética , Inducción Enzimática , Gutatión-S-Transferasa pi/genética , Humanos , Masculino , Fármacos Neuroprotectores/uso terapéutico , Síndromes de Neurotoxicidad/enzimología , Síndromes de Neurotoxicidad/inmunología , Oxidopamina/farmacología , Extractos Vegetales/uso terapéutico , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Transfección
5.
Ital J Pediatr ; 50(1): 20, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273353

RESUMEN

BACKGROUND: This study aimed to investigate the demographic and clinical characteristics, types of seizure disorders, and antiepileptic drug usage among individuals with different types of corpus callosum disorders. METHODS: A total of 73 individuals were included in the study and divided into three groups based on the type of corpus callosum abnormality: hypoplasia (H), agenesis (A), and dysgenesis (D). Demographic data, including gender and preterm birth, as well as clinical characteristics such as seizure disorders, attention deficit hyperactivity disorder (ADHD), severe developmental delay/intellectual disability, and other brain malformations, were analyzed. The types of seizure disorders and antiepileptic drugs used were also examined. RESULTS: The H group had the highest number of participants (n = 47), followed by the A group (n = 11) and the D group (n = 15). The A group had the highest percentage of males and preterm births, while the D group had the highest percentage of seizure disorders, other brain malformations, and severe developmental delay/intellectual disability. The A group also had the highest percentage of ADHD. Focal seizures were observed in all three groups, with the highest proportion in the A group. Focal impaired awareness seizures (FIAS) were present in all groups, with the highest proportion in the D group. Generalized tonic-clonic seizures (GTCS) were observed in all groups, with the highest proportion in the H group. Different types of antiepileptic drugs were used among the groups, with variations in usage rates for each drug. CONCLUSION: This study provided insights into the demographic and clinical characteristics, seizure disorders, and antiepileptic drug usage among individuals with different types of corpus callosum disorders. Significant differences were found between the groups, indicating the need for tailored management approaches. However, the study has limitations, including a small sample size and a cross-sectional design. Further research with larger sample sizes and longitudinal designs is warranted to validate these findings and explore the relationship between corpus callosum abnormality severity and clinical outcomes.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Nacimiento Prematuro , Niño , Masculino , Femenino , Recién Nacido , Humanos , Anticonvulsivantes/uso terapéutico , Cuerpo Calloso , Estudios Transversales , Epilepsia/tratamiento farmacológico , Epilepsia/epidemiología , Convulsiones/tratamiento farmacológico , Convulsiones/epidemiología , Demografía
6.
J Sci Food Agric ; 93(1): 76-84, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-22689051

RESUMEN

BACKGROUND: Myricetin is a naturally occurring flavonoid that is found in many fruits, vegetables, teas and medicinal herbs. It has been demonstrated to have anti-inflammatory properties, but, to date, no studies have described the immunomodulatory effects of myricetin on the functions of dendritic cells (DCs). The aim of this study was to evaluate the potential for myricetin to modulate lipopolysaccharide (LPS)-stimulated activation of mouse bone marrow-derived DCs. RESULTS: Our experimental data showed that treatment with myricetin up to 10 µg mL(-1) does not cause cytotoxicity in cells. Myricetin significantly decreased the secretion of tumour necrosis factor-α, interleukin-6 and interleukin-12p70 by LPS-stimulated DCs. The expression of LPS-induced major histocompatibility class II, CD40 and CD86 on DCs was also inhibited by myricetin, and the endocytic and migratory capacity of LPS-stimulated DCs was blocked by myricentin. In addition, LPS-stimulated DC-elicited allogeneic T-cell proliferation was reduced by myricetin. Moreover, our results confirmed that myricetin attenuates the responses of LPS-stimulated activation of DCs via suppression of IκB kinase/nuclear factor-κB and mitogen-activated protein kinase-dependent pathways. CONCLUSION: Myricetin has novel immunopharmacological activity, and modulation of DCs by myricetin may be an attractive strategy for the treatment of inflammatory and autoimmune disorders, and for transplantation.


Asunto(s)
Antiinflamatorios/farmacología , Médula Ósea/efectos de los fármacos , Células Dendríticas/efectos de los fármacos , Flavonoides/farmacología , Factores Inmunológicos/farmacología , Inflamación/inmunología , Extractos Vegetales/farmacología , Animales , Antiinflamatorios/uso terapéutico , Antígenos/metabolismo , Médula Ósea/metabolismo , Células Dendríticas/metabolismo , Flavonoides/uso terapéutico , Quinasa I-kappa B/metabolismo , Factores Inmunológicos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Interleucinas/metabolismo , Lipopolisacáridos , Ratones Endogámicos C57BL , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Fitoterapia , Extractos Vegetales/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Linfocitos T/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Quinasa de Factor Nuclear kappa B
7.
Antioxidants (Basel) ; 12(11)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38001861

RESUMEN

Amyotrophic lateral sclerosis (ALS) is considered a fatal progressive degeneration of motor neurons (MN) caused by oxidative stress and mitochondrial dysfunction. There are currently no treatments available. The most common inherited form of ALS is the C9orf72 mutation (C9-ALS). The proline-arginine dipeptide repeat protein (PR-DPR) produced by C9-ALS has been confirmed to be a functionally acquired pathogenic factor that can cause increased ROS, mitochondrial defects, and apoptosis in motor neurons. Pectolinarigenin (PLG) from the traditional medicinal herb Linaria vulgaris has antioxidant and anti-apoptotic properties. I established a mouse NSC-34 motor neuron cell line model expressing PR-DPR and confirmed the neuroprotective effect of PLG. The results showed that ROS production and apoptosis caused by PR-DPR could be improved by PLG treatment. In terms of mechanism research, PR-DPR inhibited the activity of the mitochondrial fusion proteins OPA1 and mitofusin 2. Conversely, the expression of fission protein fission 1 and dynamin-related protein 1 (DRP1) increased. However, PLG treatment reversed these effects. Furthermore, I found that PLG increased the expression and deacetylation of OPA1. Deacetylation of OPA1 enhances mitochondrial fusion and resistance to apoptosis. Finally, transfection with Sirt3 small interfering RNA abolished the neuroprotective effects of PLG. In summary, the mechanism by which PLG alleviates PR-DPR toxicity is mainly achieved by activating the SIRT3/OPA1 axis to regulate the balance of mitochondrial dynamics. Taken together, the potential of PLG in preclinical studies for C9-ALS drug development deserves further evaluation.

8.
Cells ; 12(20)2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37887320

RESUMEN

C9orf72 mutations are the most common form of familial amyotrophic lateral sclerosis (C9-ALS). It causes the production of proline-arginine dipeptide repeat proteins (PR-DPRs) in motor neurons (MNs), leading to the molecular pathology characteristic of ALS. UNC13A is critical for maintaining the synaptic function of MNs. Most ALS patients have nuclear deletion of the splicing repressor TDP-43 in MNs, which causes inclusion of the cryptic exon (CE) of UNC13A mRNA, resulting in nonsense-mediated mRNA decay and reduced protein expression. Therefore, in this study, we explored the role of PR-DPR in CE inclusion of UNC13A mRNA. Our results showed that PR-DPR (PR50) induced CE inclusion and decreased the protein expression of UNC13A in human neuronal cell lines. We also identified an interaction between the RNA-binding protein NOVA1 and PR50 by yeast two-hybrid screening. NOVA1 expression is known to be reduced in patients with ALS. We found that knockdown of NOVA1 enhanced CE inclusion of UNC13A mRNA. Furthermore, the naturally occurring triterpene betulin can inhibit the interaction between NOVA1 and PR50, thus preventing CE inclusion of UNC13A mRNA and protein reduction in human neuronal cell lines. This study linked PR-DPR with CE inclusion of UNC13A mRNA and developed candidate therapeutic strategies for C9-ALS using betulin.


Asunto(s)
Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Arginina/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Dipéptidos/metabolismo , Neuronas Motoras/patología , Antígeno Ventral Neuro-Oncológico , Prolina/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Antioxidants (Basel) ; 12(10)2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37891975

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal rare disease of progressive degeneration of motor neurons. The most common genetic mutation in ALS is the hexanucleotide repeat expansion (HRE) located in the first intron of the C9orf72 gene (C9-ALS). HRE can produce dipeptide repeat proteins (DPRs) such as poly glycine-alanine (GA) in a repeat-associated non-ATG (RAN) translation. GA-DPR has been shown to be toxic to motor neurons in various biological models. However, its effects on microglia involved in C9-ALS have not been reported. Here, we show that GA-DPR (GA50) activates the NLR family pyrin domain containing 3 (NLRP3) inflammasome in a human HMC3 microglia model. MCC950 (specific inhibitor of the NLRP3) treatment can abrogate this activity. Next, using yeast two-hybrid screening, we identified sulfide quinone oxidoreductase (SQOR) as a GA50 interacting protein. SQOR knockdown in HMC3 cells can significantly induce the activity of the NLRP3 inflammasome by upregulating the level of intracellular reactive oxygen species and the cytoplasmic escape of mitochondrial DNA. Furthermore, we obtained irisflorentin as an effective blocker of the interaction between SQOR and GA50, thus inhibiting NLRP3 inflammasome activity in GA50-expressing HMC3 cells. These results imply the association of GA-DPR, SQOR, and NLRP3 inflammasomes in microglia and establish a treatment strategy for C9-ALS with irisflorentin.

10.
Cells ; 12(18)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37759532

RESUMEN

Defective autophagy is one of the cellular hallmarks of Parkinson's disease (PD). Therefore, a therapeutic strategy could be a modest enhancement of autophagic activity in dopamine (DA) neurons to deal with the clearance of damaged mitochondria and abnormal protein aggregates. Syringin (SRG) is a phenolic glycoside derived from the root of Acanthopanax senticosus. It has antioxidant, anti-apoptotic, and anti-inflammatory properties. However, whether it has a preventive effect on PD remains unclear. The present study found that SRG reversed the increase in intracellular ROS-caused apoptosis in SH-SY5Y cells induced by neurotoxin 6-OHDA exposure. Likewise, in C. elegans, degeneration of DA neurons, DA-related food-sensitive behaviors, longevity, and accumulation of α-synuclein were also improved. Studies of neuroprotective mechanisms have shown that SRG can reverse the suppressed expression of SIRT1, Beclin-1, and other autophagy markers in 6-OHDA-exposed cells. Thus, these enhanced the formation of autophagic vacuoles and autophagy activity. This protective effect can be blocked by pretreatment with wortmannin (an autophagosome formation blocker) and bafilomycin A1 (an autophagosome-lysosome fusion blocker). In addition, 6-OHDA increases the acetylation of Beclin-1, leading to its inactivation. SRG can induce the expression of SIRT1 and promote the deacetylation of Beclin-1. Finally, we found that SRG reduced the 6-OHDA-induced expression of miR-34a targeting SIRT1. The overexpression of miR-34a mimic abolishes the neuroprotective ability of SRG. In conclusion, SRG induces autophagy via partially regulating the miR-34a/SIRT1/Beclin-1 axis to prevent 6-OHDA-induced apoptosis and α-synuclein accumulation. SRG has the opportunity to be established as a candidate agent for the prevention and cure of PD.


Asunto(s)
MicroARNs , Neuroblastoma , Síndromes de Neurotoxicidad , Enfermedad de Parkinson , Humanos , Animales , Oxidopamina/farmacología , Caenorhabditis elegans , alfa-Sinucleína , Beclina-1 , Sirtuina 1/genética , Autofagia , MicroARNs/genética
11.
Antioxidants (Basel) ; 12(9)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37760085

RESUMEN

The degeneration of dopamine (DA) neurons is known to be associated with defects in mitochondrial biogenesis caused by aging, environmental factors, or mutations in genes, leading to Parkinson's disease (PD). As PD has not yet been successfully cured, the strategy of using small molecule drugs to protect and restore mitochondrial biogenesis is a promising direction. This study evaluated the efficacy of synthetic chiisanoside (CSS) identified in the leaves of Acanthopanax sessiliflorus to prevent PD symptoms. The results show that in the 6-hydroxydopamine (6-OHDA) model, CSS pretreatment can effectively alleviate the reactive oxygen species generation and apoptosis of SH-SY5Y cells, thereby lessening the defects in the C. elegans model including DA neuron degeneration, dopamine-mediated food sensitivity behavioral disorders, and shortened lifespan. Mechanistically, we found that CSS could restore the expression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α), a key molecule in mitochondrial biogenesis, and its downstream related genes inhibited by 6-OHDA. We further confirmed that this is due to the enhanced activity of parkin leading to the ubiquitination and degradation of PGC-1α inhibitor protein Zinc finger protein 746 (ZNF746). Parkin siRNA treatment abolished this effect of CSS. Furthermore, we found that CSS inhibited 6-OHDA-induced expression of miR-181a, which targets parkin. The CSS's ability to reverse the 6-OHDA-induced reduction in mitochondrial biogenesis and activation of apoptosis was abolished after the transfection of anti-miR-181a and miR-181a mimics. Therefore, the neuroprotective effect of CSS mainly promotes mitochondrial biogenesis by regulating the miR-181a/Parkin/ZNF746/PGC-1α axis. CSS potentially has the opportunity to be developed into PD prevention agents.

12.
Cells ; 12(6)2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36980235

RESUMEN

Glioblastoma (GBM) is a primary brain tumor of unknown etiology. It is extremely aggressive, incurable and has a short average survival time for patients. Therefore, understanding the precise molecular mechanisms of this diseases is essential to establish effective treatments. In this study, we cloned and sequenced a splice variant of the hydroxysteroid 11-ß dehydrogenase 1 like gene (HSD11B1L) and named it HSD11B1L-181. HSD11 B1L-181 was specifically expressed only in GBM cells. Overexpression of this variant can significantly promote the proliferation, migration and invasion of GBM cells. Knockdown of HSD11B1L-181 expression inhibited the oncogenic potential of GBM cells. Furthermore, we identified the direct interaction of parkin with HSD11B1L-181 by screening the GBM cDNA expression library via yeast two-hybrid. Parkin is an RBR E3 ubiquitin ligase whose mutations are associated with tumorigenesis. Small interfering RNA treatment of parkin enhanced the proliferative, migratory and invasive abilities of GBM. Finally, we found that the alkaloid peiminine from the bulbs of Fritillaria thunbergii Miq blocks the interaction between HSD11B1L-181 and parkin, thereby lessening carcinogenesis of GBM. We further confirmed the potential of peiminine to prevent GBM in cellular, ectopic and orthotopic xenograft mouse models. Taken together, these findings not only provide insight into GBM, but also present an opportunity for future GBM treatment.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1 , Neoplasias Encefálicas , Glioblastoma , Ubiquitina-Proteína Ligasas , Animales , Humanos , Ratones , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/efectos de los fármacos , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/genética , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Carcinogénesis/genética , Cevanas/farmacología , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Isoformas de Proteínas/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ubiquitina-Proteína Ligasas/efectos de los fármacos , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
13.
Food Chem Toxicol ; 173: 113636, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36708866

RESUMEN

Mitochondrial dysfunction has been implicated in Parkinson's disease. Mic60 is a critical component of mitochondrial crista remodeling and participates in maintaining mitochondrial structure and function. This study investigated whether the carnosic acid (CA) of rosemary protects the mitochondria of SH-SY5Y cells against the neurotoxicity of 6-hydroxydopamine (6-OHDA) by regulating Mic60. Our results showed that CA pretreatment reversed the reduction in the Mic60 and citrate synthase proteins, as well as the protein induction of PKA caused by 6-OHDA. Moreover, Mic60 and PINK1 siRNAs blocked the ability of CA to lessen the release of mitochondrial cytochrome c by 6-OHDA. As shown by immunoprecipitation assay, in 6-OHDA-treated cells, the interaction of Mic60 with its phosphorylated threonine residue was decreased, but the interaction with its phosphorylated serine residue was increased. PINK1 siRNA and forskolin, a PKA activator, reversed these interactions. Moreover, forskolin pretreatment prevented CA from rescuing the interaction of PINK1 and Mic60 and the reduction in cytochrome c release and mitophagy impairment in 6-OHDA-treated cells. In conclusion, CA prevents 6-OHDA-induced cytochrome c release by regulating Mic60 phosphorylation by PINK1 through a downregulation of PKA. The regulation of Mic60 by CA can be considered as a protective mechanism for the prevention of Parkinson's disease.


Asunto(s)
Neuroblastoma , Enfermedad de Parkinson , Humanos , Oxidopamina/toxicidad , Citocromos c/metabolismo , Proteínas Mitocondriales/metabolismo , Enfermedad de Parkinson/metabolismo , Colforsina/metabolismo , Neuroblastoma/metabolismo , Mitocondrias/metabolismo , Línea Celular Tumoral , ARN Interferente Pequeño , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Apoptosis
14.
Cancers (Basel) ; 14(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36010884

RESUMEN

Brain-enriched myelin-associated protein 1 (BCAS1) is frequently highly expressed in human cancer, but its detailed function is unclear. Here, we identified a novel splice variant of the BCAS1 gene in glioblastoma multiforme (GBM) named BCAS1-SV1. The expression of BCAS1-SV1 was weak in heathy brain cells but high in GBM cell lines. The overexpression of BCAS1-SV1 significantly increased the proliferation and migration of GBM cells, whereas the RNA-interference-mediated knockdown of BCAS1-SV1 reduced proliferation and migration. Moreover, using a yeast-two hybrid assay, immunoprecipitation, and immunofluorescence staining, we confirmed that ß-arrestin 2 is an interaction partner of BCAS1-SV1 but not BCAS1. The downregulation of ß-arrestin 2 directly enhanced the malignancy of GBM and abrogated the effects of BCAS1-SV1 on GBM cells. Finally, we used a yeast two-hybrid-based growth assay to identify that maackiain (MK) is a potential inhibitor of the interaction between BCAS1-SV1 and ß-arrestin 2. MK treatment lessened the proliferation and migration of GBM cells and prolonged the lifespan of tumor-bearing mice in subcutaneous xenograft and intracranial U87-luc xenograft models. This study provides the first evidence that the gain-of-function BCAS1-SV1 splice variant promotes the development of GBM by suppressing the ß-arrestin 2 pathway and opens up a new therapeutic perspective in GBM.

15.
Cells ; 11(19)2022 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-36231090

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal disease in which motor neurons gradually degenerate. The mutation of the C9orf72 gene is the main genetic cause of ALS (C9-ALS). One of its specific pathological features is the production of proline-arginine (PR) dipeptide repeat protein (DPR). In this study, we developed a PR-DPR (PR50)-expressing human HMC3 microglial cell model. We found that PR50 mainly aggregates into spots in the nucleus and induces significant NLRP3 inflammasome activity. Moreover, mouse NSC-34 motor neuron cells treated with a conditional medium of PR50-expressing HMC3 cells (PR-CM) caused cell damage and apoptosis activity. However, R50-expressing HMC cells treated with MCC950 (an NLRP3 inhibitor) reversed this result. Furthermore, we identified complement component 1 q subcomponent-binding protein (C1QBP) as one of the interaction partners of PR50. The downregulation of C1QBP in HMC3 cells induces NLRP3 inflammasome activity similar to PR50 expression. Finally, we found that syringin can block the interaction between PR50 and C1QBP, and effectively reduce the PR50-induced NLRP3 inflammasome activity in HMC3 cells. This improves the apoptosis of NSC-34 cells caused by PR-CM. This study is the first to link PR50, C1QBP, and NLRP3 inflammasome activity in microglia and develop potential therapeutic strategies for syringin intervention in C9-ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Arginina , Proteína C9orf72/genética , Proteínas Portadoras , Complemento C1/metabolismo , Dipéptidos/metabolismo , Dipéptidos/farmacología , Glucósidos , Humanos , Inflamasomas/metabolismo , Ratones , Microglía/metabolismo , Proteínas Mitocondriales/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fenilpropionatos , Prolina , Proteínas/metabolismo
16.
Antioxidants (Basel) ; 11(11)2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36358461

RESUMEN

We assessed the antioxidant potential of narcissoside from Sambucus nigra flowers (elderflowers) in Parkinson's disease models in vitro and in vivo. The results showed that narcissoside lessened the 6-hydroxydopamine (6-OHDA)-induced increase in reactive oxygen species (ROS) and apoptosis in SH-SY5Y cells. In the 6-OHDA-exposed Caenorhabditis elegans model, narcissoside reduced degeneration of dopaminergic neurons and ROS generation, and also improved dopamine-related food-sensitive behavior and shortened lifespan. Moreover, NCS increased total glutathione (GSH) by increasing the expression of the catalytic subunit and modifier subunit of γ-glutamylcysteine ligase in cells and nematodes. Treatment with a GSH inhibitor partially abolished the anti-apoptotic ability of narcissoside. Furthermore, narcissoside diminished the 6-OHDA-induced phosphorylation of JNK and p38, while rising activities of ERK and Akt in resisting apoptosis. The antioxidant response element (ARE)-luciferase reporter activity analysis and electromobility gel shift assay showed that narcissoside promotes the transcriptional activity mediated by Nrf2. Finally, we found that narcissoside augmented the expression of miR200a, a translational inhibitor of the Nrf2 repressor protein Keap1. Downregulation of Nrf2 and miR200a by RNAi and anti-miR200a, respectively, reversed the neuroprotective ability of narcissoside. In summary, narcissoside can enhance the miR200a/Nrf2/GSH antioxidant pathway, alleviate 6-OHDA-induced apoptosis, and has the neuroprotective potential.

17.
Biotechnol Lett ; 33(5): 903-10, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21267764

RESUMEN

Modulation of dendritic cell (DC) fate and function may be one approach for the treatment of inflammatory and autoimmune diseases. n-Butylidenephthalide (BP), derived from Angelica sinensis, at 40 µg/ml significantly decreased the secretion of interleukin-6 and tumor necrosis factor-α by lipopolysaccharide (LPS)-stimulated activation of cultured murine DC2.4 cells (P<0.01). LPS-induced major histocompatibility complex class II (P<0.05), CD86 (P<0.01) and CD40 (P<0.01) expression on DC2.4 cells was also inhibited by BP. The endocytic capacity of LPS-stimulated DC2.4 cells was increased by BP (P<0.01). The antigen-presenting capacity of LPS-stimulated DC2.4 cells was decreased by BP (P<0.05). Moreover, we confirmed BP attenuates the responses of LPS-stimulated activation of DCs via suppression of NF-κB-dependent pathways.


Asunto(s)
Células Dendríticas/efectos de los fármacos , Inmunosupresores/metabolismo , Lipopolisacáridos/inmunología , FN-kappa B/antagonistas & inhibidores , Anhídridos Ftálicos/metabolismo , Angelica sinensis/química , Animales , Antígeno B7-2/biosíntesis , Antígenos CD40/biosíntesis , Línea Celular , Antígenos de Histocompatibilidad Clase II/biosíntesis , Ratones , Anhídridos Ftálicos/aislamiento & purificación
18.
Phytomedicine ; 80: 153369, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33070082

RESUMEN

BACKGROUND: Impairment of mitochondrial biogenesis is associated with the pathological progression of Parkinson's disease (PD). Parkin-interacting substrate (PARIS) can be ubiquitinated by parkin and prevents the repression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α). PURPOSE: This study investigated whether the neuroprotective mechanism of carnosic acid (CA) from rosemary is mediated via the regulation of PARIS and PGC-1α by parkin. METHODS: The Western blotting and RT-PCR were used to determine protein and mRNA, respectively. To investigate the protein-protein interaction of between PARIS and ubiquitin, the immunoprecipitation assay (IP assay) was utilized. Silencing of endogenous parkin or PGC-1α was performed by using transient transfection of small interfering RNA (siRNA). RESULTS: SH-SY5Y cells treated with 6-hydroxydopamine (6-OHDA) increased PARIS protein, decreased PGC-1α protein, and reduced protein and mRNA of mitochondrial biogenesis-related genes. CA pretreatment reversed the effects of 6-OHDA. By IP assay, the interaction of PARIS with ubiquitin protein caused by CA was stronger than that caused by 6-OHDA. Moreover, knockdown of parkin attenuated the ability of CA to reverse the 6-OHDA-induced increase in PARIS and decrease in PGC-1α expression. PGC-1α siRNA was used to investigate how CA influenced the effect of 6-OHDA on the modulation of mitochondrial biogenesis and apoptosis. In the presence of PGC-1α siRNA, CA could no longer significantly reverse the reduction of mitochondrial biogenesis or the induction of cleavage of apoptotic-related proteins by 6-OHDA. CONCLUSION: The cytoprotective of CA is related to the enhancement of mitochondrial biogenesis by inhibiting PARIS and inducing PGC-1α by parkin. The activation of PGC-1α-mediated mitochondrial biogenesis by CA prevents the degeneration of dopaminergic neurons, CA may have therapeutic application in PD.


Asunto(s)
Abietanos/farmacología , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Proteínas Represoras/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proteínas de Unión al ADN/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Biogénesis de Organelos , Oxidopamina/toxicidad , Enfermedad de Parkinson/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , ARN Interferente Pequeño/farmacología , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
Cancers (Basel) ; 13(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34771481

RESUMEN

Gold nanoparticles (AuNPs) were fabricated with biocompatible collagen (Col) and then conjugated with berberine (BB), denoted as Au-Col-BB, to investigate the endocytic mechanisms in Her-2 breast cancer cell line and in bovine aortic endothelial cells (BAEC). Owing to the superior biocompatibility, tunable physicochemical properties, and potential functionalization with biomolecules, AuNPs have been well studied as carriers of biomolecules for diseases and cancer therapeutics. Composites of AuNPs with biopolymer, such as fibronectin or Col, have been revealed to increase cell proliferation, migration, and differentiation. BB is a natural compound with impressive health benefits, such as lowering blood sugar and reducing weight. In addition, BB can inhibit cell proliferation by modulating cell cycle progress and autophagy, and induce cell apoptosis in vivo and in vitro. In the current research, BB was conjugated on the Col-AuNP composite ("Au-Col"). The UV-Visible spectroscopy and infrared spectroscopy confirmed the conjugation of BB on Au-Col. The particle size of the Au-Col-BB conjugate was about 227 nm, determined by dynamic light scattering. Furthermore, Au-Col-BB was less cytotoxic to BAEC vs. Her-2 cell line in terms of MTT assay and cell cycle behavior. Au-Col-BB, compared to Au-Col, showed greater cell uptake capacity and potential cellular transportation by BAEC and Her-2 using the fluorescence-conjugated Au-Col-BB. In addition, the clathrin-mediated endocytosis and cell autophagy seemed to be the favorite endocytic mechanism for the internalization of Au-Col-BB by BAEC and Her-2. Au-Col-BB significantly inhibited cell migration in Her-2, but not in BAEC. Moreover, apoptotic cascade proteins, such as Bax and p21, were expressed in Her-2 after the treatment of Au-Col-BB. The tumor suppression was examined in a model of xenograft mice treated with Au-Col-BB nanovehicles. Results demonstrated that the tumor weight was remarkably reduced by the treatment of Au-Col-BB. Altogether, the promising findings of Au-Col-BB nanocarrier on Her-2 breast cancer cell line suggest that Au-Col-BB may be a good candidate of anticancer drug for the treatment of human breast cancer.

20.
Food Chem Toxicol ; 136: 110942, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31705926

RESUMEN

An imbalance in mitochondrial dynamics is strongly associated with Parkinson's disease. The fusion protein optic atrophy 1 (OPA1) is up-regulated through the activation of parkin-mediated IκB kinase γ (IKKγ)/p65 signaling. This study investigated whether the neuroprotection of carnosic acid (CA) from rosemary is involved in mitochondrial dynamics and OPA1 protein induction by parkin/IKKγ/p65 signaling. The neurotoxin 6-hydroxydopamine (6-OHDA) treated with SH-SY5Y cells decreased OPA1 and mitofusin 2 fusion proteins, but increased fission 1 and dynamin related protein 1 (DRP1) fission proteins. By immunofluorescence, 6-OHDA induced the fluorescence of green spots outside the mitochondria, indicating that cytochrome c was released to the cytoplasm. Except for the effects on DRP1 protein, CA pretreatment reversed these effects of 6-OHDA. Additionally, CA treatment increased the ubiquitination of IKKγ, nuclear p65 protein, OPA1-p65 DNA binding activity, and OPA1 protein. However, transfection of parkin small interfering RNA (siRNA) attenuated these effects of CA. Furthermore, transfection of OPA1 siRNA abolished the action of CA to reverse 6-OHDA-increased cytosolic cytochrome c protein, apoptotic-related protein cleavage, and cell death. In conclusion, the mechanism by which CA counteracts the toxicity of 6-OHDA is through modulation of mitochondrial dynamics and upregulation of OPA1 via activation of the parkin/IKKγ/p65 pathway.


Asunto(s)
Abietanos/farmacología , GTP Fosfohidrolasas/metabolismo , Quinasa I-kappa B/metabolismo , Fármacos Neuroprotectores/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Apoptosis/efectos de los fármacos , Secuencia de Bases , Línea Celular Tumoral , Humanos , Quinasa I-kappa B/química , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Neurotoxinas/toxicidad , Oxidopamina/toxicidad , Factor de Transcripción ReIA/metabolismo , Ubiquitinación/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA