Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Ecol Appl ; 30(2): e02028, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31670888

RESUMEN

Habitat loss and fragmentation greatly affect biological diversity. Actions to counteract their negative effects include increasing the quality, amount and connectivity of seminatural habitats at the landscape scale. However, much of the scientific evidence underpinning landscape restoration comes from studies of habitat loss and fragmentation, and it is unclear whether the ecological principles derived from habitat removal investigations are applicable to habitat creation. In addition, the relative importance of local- (e.g., improving habitat quality) vs. landscape-level (e.g., increasing habitat connectivity) actions to restore species is largely unknown, partly because studying species responses over sufficiently large spatial and temporal scales is challenging. We studied small mammal responses to large-scale woodland creation spanning 150 yr, and assessed the influence of local- and landscape-level characteristics on three small mammal species of varying woodland affinity. Woodland specialists, generalists, and grassland specialists were present in woodlands across a range of ages from 10 to 160 yr, demonstrating that these species can quickly colonize newly created woodlands. However, we found evidence that woodlands become gradually better over time for some species. The responses of individual species corresponded to their habitat specificity. A grassland specialist (Microtus agrestis) was influenced only by landscape attributes; a woodland generalist (Apodemus sylvaticus) and specialist (Myodes glareolus) were primarily influenced by local habitat attributes, and partially by landscape characteristics. At the local scale, high structural heterogeneity, large amounts of deadwood, and a relatively open understory positively influenced woodland species (both generalists and specialists); livestock grazing had strong negative effects on woodland species abundance. Actions to enhance habitat quality at the patch scale focusing on these attributes would benefit these species. Woodland creation in agricultural landscapes is also likely to benefit larger mammals and birds of prey feeding on small mammals and increase ecosystem processes such as seed dispersal.


Asunto(s)
Ecosistema , Bosques , Animales , Biodiversidad , Aves , Mamíferos
2.
Proc Biol Sci ; 285(1885)2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30158311

RESUMEN

Landscape context can affect how individuals perceive patch quality during colonization. However, although context-dependent colonization has been observed in aquatic environments, it has rarely been studied in terrestrial environments or at large spatial scales. In this paper, we assessed how landscape context influenced colonization rates in a large-scale (ca 7000 km2) terrestrial system where colonizers (Willow Warbler Phylloscopus trochilus) are capable of rapid, long-distance movements. Bioacoustic recorders were used to detect first song dates (an indicator of colonization or re-colonization) and settlement in 23 naturally replicated habitat patches. We compared support for three competing hypotheses describing colonization patterns that depend on landscape context ('redirection', 'landscape-selection' and 'relative patch size') with two patch-level hypotheses (patch 'quality' and 'heterospecific attraction'). First song was earlier when habitat availability in the landscape was low, supporting the 'redirection' hypothesis. Settlement probability was best predicted by patch 'quality' and was lower in woodlands with a dense understorey. Results suggest that colonization of habitat patches by male P. trochilus after spring migration is spatially hierarchical. First, initial colonization depends on landscape context, and settlement is then determined by fine-scale vegetation characteristics. More broadly, we suggest that patterns observed in fragmented aquatic environments (e.g. 'redirection') can, in some circumstances, be extended to large-scale terrestrial environments.


Asunto(s)
Distribución Animal , Ecosistema , Pájaros Cantores/fisiología , Migración Animal , Animales , Inglaterra , Islas , Escocia
3.
Conserv Biol ; 32(2): 345-354, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28685859

RESUMEN

Ecosystem function and resilience are compromised when habitats become fragmented due to land-use change. This has led to national and international conservation strategies aimed at restoring habitat extent and improving functional connectivity (i.e., maintaining dispersal processes). However, biodiversity responses to landscape-scale habitat creation and the relative importance of spatial and temporal scales are poorly understood, and there is disagreement over which conservation strategies should be prioritized. We used 160 years of historic post-agricultural woodland creation as a natural experiment to evaluate biodiversity responses to habitat creation in a landscape context. Birds were surveyed in 101 secondary, broadleaf woodlands aged 10-160 years with ≥80% canopy cover and in landscapes with 0-17% broadleaf woodland cover within 3000 m. We used piecewise structural equation modeling to examine the direct and indirect relationships between bird abundance and diversity, ecological continuity, patch characteristics, and landscape structure and quantified the relative conservation value of local and landscape scales for bird communities. Ecological continuity indirectly affected overall bird abundance and species richness through its effects on stand structure, but had a weaker influence (effect size near 0) on the abundance and diversity of species most closely associated with woodland habitats. This was probably because woodlands were rapidly colonized by woodland generalists in ≤10 years (minimum patch age) but were on average too young (median 50 years) to be colonized by woodland specialists. Local patch characteristics were relatively more important than landscape characteristics for bird communities. Based on our results, biodiversity responses to habitat creation depended on local- and landscape-scale factors that interacted across time and space. We suggest that there is a need for further studies that focus on habitat creation in a landscape context and that knowledge gained from studies of habitat fragmentation and loss should be used to inform habitat creation with caution because the outcomes are not necessarily reciprocal.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Animales , Biodiversidad , Aves , Bosques
4.
Ecol Appl ; 27(5): 1541-1554, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28370641

RESUMEN

Conservation strategies to tackle habitat loss and fragmentation require actions at the local (e.g., improving/expanding existing habitat patches) and landscape level (e.g., creating new habitat in the matrix). However, the relative importance of these actions for biodiversity is still poorly understood, leading to debate on how to prioritize conservation activities. Here, we assess the relative importance of local vs. landscape-level attributes in determining the use of woodlands by bats in fragmented landscapes; we also compare the role of habitat amount in the surrounding landscape per se vs. a combination of both habitat amount and configuration and explore whether the relative importance of these attributes varies with species mobility and landscape context. We conducted acoustic surveys in 102 woodland patches in the UK that form part of the WrEN project (www.wren-project.com), a large-scale natural experiment designed to study the effects of 160 yr of woodland creation on biodiversity and inform landscape-scale conservation. We used multivariate analysis and a model-selection approach to assess the relative importance of local (e.g., vegetation structure) and landscape-level (e.g., amount/configuration of surrounding land types) attributes on bat occurrence and activity levels. Species mobility was an important trait determining the relative importance of local vs. landscape-level attributes for different bat species. Lower mobility species were most strongly influenced by local habitat quality; the landscape became increasingly important for higher mobility species. At the landscape-scale, a combination of habitat amount and configuration appeared more important than habitat amount alone for lower mobility species, while the opposite was observed for higher mobility species. Regardless of species mobility, landscape-level attributes appeared more important for bats in a more homogeneous and intensively farmed landscape. Conservation strategies involving habitat creation and restoration should take into account the mobility of target species and prioritize landscape-level actions in more homogeneous and intensively farmed landscapes where habitat loss and fragmentation have been more severe.


Asunto(s)
Distribución Animal , Biodiversidad , Quirópteros/fisiología , Conservación de los Recursos Naturales , Bosques , Animales , Inglaterra , Escocia
5.
Nat Ecol Evol ; 4(3): 304-311, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31988448

RESUMEN

Global conservation targets to reverse biodiversity declines and halt species extinctions are not being met despite decades of conservation action. However, a lack of measurable change in biodiversity indicators towards these targets is not necessarily a sign that conservation has failed; instead, temporal lags in species' responses to conservation action could be masking our ability to observe progress towards conservation success. Here we present our perspective on the influence of ecological time lags on the assessment of conservation success and review the principles of time lags and their ecological drivers. We illustrate how a number of conceptual species may respond to change in a theoretical landscape and evaluate how these responses might influence our interpretation of conservation success. We then investigate a time lag in a real biodiversity indicator using empirical data and explore alternative approaches to understand the mechanisms that drive time lags. Our proposal for setting and evaluating conservation targets is to use milestones, or interim targets linked to specific ecological mechanisms at key points in time, to assess whether conservation actions are likely to be working. Accounting for ecological time lags in biodiversity targets and indicators will greatly improve the way that we evaluate conservation successes.


Asunto(s)
Conservación de los Recursos Naturales , Ecología , Biodiversidad , Extinción Biológica
6.
J Anim Ecol ; 78(4): 857-65, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19426252

RESUMEN

1. Roads may affect wildlife populations through habitat loss and disturbances, as they create an abrupt linear edge, increasing the proportion of edge exposed to a different habitat. Three types of edge effects have been recognized: abiotic, direct biotic, and indirect biotic. 2. We explored the direct biotic edge effects of 3- to 4-m wide roads, and also a previously unrecognized type of edge effect: social. We live-trapped two threatened endemic rodents from Cozumel Island (Oryzomys couesi cozumelae and Reithrodontomys spectabilis) in 16 plots delimited by roads on two sides, to compare edge effects between two adjacent edges (corners), single-edge and interior forest, on life history and social variables. 3. No significant edge effects were observed on the life-history variables, with the exception of differences in body condition between males and females of O. c. cozumelae near edges. Both species showed significant and contrasting effects on their social variables. 4. O. c. cozumelae was distributed according to its age and sex: the proportion of adults and males was higher in interior than near edges, while juveniles and females were more abundant near edges. More nonreproductive females were present in corners than in single-edge and interior, while the opposite distribution was observed for nonreproductive males. 5. The distribution of R. spectabilis was related to its age and reproductive condition, but not to its sex. The proportion of adults was significantly higher in corners, while juveniles were only caught in single-edge and interior quadrants. The proportion of reproductive individuals was higher in edge than interior quadrants, while reproductive females were only present in edge quadrants. 6. We found significant differences between the quadrants with the greatest edge exposure in comparison with other quadrants. The social edge effects we identified complement the typology of edge effects recognized in ecological literature. Our study provides insight into the effects that sharp road edges have on biological and social characteristics of small mammal populations, highlighting how such effects vary among species. Our findings have important conservation implications for these threatened species, but are also applicable in a broader context wherever there are abrupt edges caused by linear landscape features.


Asunto(s)
Ecosistema , Roedores/fisiología , Transportes , Distribución por Edad , Animales , Conservación de los Recursos Naturales , Femenino , Masculino , Dinámica Poblacional , Razón de Masculinidad
7.
Ecol Evol ; 6(9): 3012-25, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27217949

RESUMEN

Natural experiments have been proposed as a way of complementing manipulative experiments to improve ecological understanding and guide management. There is a pressing need for evidence from such studies to inform a shift to landscape-scale conservation, including the design of ecological networks. Although this shift has been widely embraced by conservation communities worldwide, the empirical evidence is limited and equivocal, and may be limiting effective conservation. We present principles for well-designed natural experiments to inform landscape-scale conservation and outline how they are being applied in the WrEN project, which is studying the effects of 160 years of woodland creation on biodiversity in UK landscapes. We describe the study areas and outline the systematic process used to select suitable historical woodland creation sites based on key site- and landscape-scale variables - including size, age, and proximity to other woodland. We present the results of an analysis to explore variation in these variables across sites to test their suitability as a basis for a natural experiment. Our results confirm that this landscape satisfies the principles we have identified and provides an ideal study system for a long-term, large-scale natural experiment to explore how woodland biodiversity is affected by different site and landscape attributes. The WrEN sites are now being surveyed for a wide selection of species that are likely to respond differently to site- and landscape-scale attributes and at different spatial and temporal scales. The results from WrEN will help develop detailed recommendations to guide landscape-scale conservation, including the design of ecological networks. We also believe that the approach presented demonstrates the wider utility of well-designed natural experiments to improve our understanding of ecological systems and inform policy and practice.

8.
PLoS One ; 10(5): e0126850, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25978034

RESUMEN

Urbanisation is one of the most dramatic forms of land use change which relatively few species can adapt to. Determining how and why species respond differently to urban habitats is important in predicting future biodiversity loss as urban areas rapidly expand. Understanding how morphological or behavioural traits can influence species adaptability to the built environment may enable us to improve the effectiveness of conservation efforts. Although many bat species are able to exploit human resources, bat species richness generally declines with increasing urbanisation and there is considerable variation in the responses of different bat species to urbanisation. Here, we use acoustic recordings from two cryptic, and largely sympatric European bat species to assess differential responses in their use of fragmented urban woodland and the surrounding urban matrix. There was a high probability of P. pygmaeus activity relative to P. pipistrellus in woodlands with low clutter and understory cover which were surrounded by low levels of built environment. Additionally, the probability of recording P. pygmaeus relative to P. pipistrellus was considerably higher in urban woodland interior or edge habitat in contrast to urban grey or non-wooded green space. These results show differential habitat use occurring between two morphologically similar species; whilst the underlying mechanism for this partitioning is unknown it may be driven by competition avoidance over foraging resources. Their differing response to urbanisation indicates the difficulties involved when attempting to assess how adaptable a species is to urbanisation for conservation purposes.


Asunto(s)
Quirópteros/fisiología , Ambiente , Urbanización , Animales , Conservación de los Recursos Naturales , Bosques , Vigilancia de la Población , Escocia
9.
R Soc Open Sci ; 1(3): 140200, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26064557

RESUMEN

Urbanization is a major driver of the global loss of biodiversity; to mitigate its adverse effects, it is essential to understand what drives species' patterns of habitat use within the urban matrix. While many animal species are known to exhibit sex differences in habitat use, adaptability to the urban landscape is commonly examined at the species level, without consideration of intraspecific differences. The high energetic demands of pregnancy and lactation in female mammals can lead to sexual differences in habitat use, but little is known of how this might affect their response to urbanization. We predicted that female Pipistrellus pygmaeus would show greater selectivity of forging locations within urban woodland in comparison to males at both a local and landscape scale. In line with these predictions, we found there was a lower probability of finding females within woodlands which were poorly connected, highly cluttered, with a higher edge : interior ratio and fewer mature trees. By contrast, habitat quality and the composition of the surrounding landscape were less of a limiting factor in determining male distributions. These results indicate strong sexual differences in the habitat use of fragmented urban woodland, and this has important implications for our understanding of the adaptability of bats and mammals more generally to urbanization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA