Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 480(7375): 69-71, 2011 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-22129725

RESUMEN

The tidal disruption of a solar-mass star around a supermassive black hole has been extensively studied analytically and numerically. In these events, the star develops into an elongated banana-shaped structure. After completing an eccentric orbit, the bound debris falls into the black hole, forming an accretion disk and emitting radiation. The same process may occur on planetary scales if a minor body passes too close to its star. In the Solar System, comets fall directly into our Sun or onto planets. If the star is a compact object, the minor body can become tidally disrupted. Indeed, one of the first mechanisms invoked to produce strong gamma-ray emission involved accretion of comets onto neutron stars in our Galaxy. Here we report that the peculiarities of the 'Christmas' gamma-ray burst (GRB 101225A) can be explained by a tidal disruption event of a minor body around an isolated Galactic neutron star. This would indicate either that minor bodies can be captured by compact stellar remnants more frequently than occurs in the Solar System or that minor-body formation is relatively easy around millisecond radio pulsars. A peculiar supernova associated with a gamma-ray burst provides an alternative explanation.

2.
Nature ; 476(7361): 421-4, 2011 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-21866154

RESUMEN

Supermassive black holes have powerful gravitational fields with strong gradients that can destroy stars that get too close, producing a bright flare in ultraviolet and X-ray spectral regions from stellar debris that forms an accretion disk around the black hole. The aftermath of this process may have been seen several times over the past two decades in the form of sparsely sampled, slowly fading emission from distant galaxies, but the onset of the stellar disruption event has not hitherto been observed. Here we report observations of a bright X-ray flare from the extragalactic transient Swift J164449.3+573451. This source increased in brightness in the X-ray band by a factor of at least 10,000 since 1990 and by a factor of at least 100 since early 2010. We conclude that we have captured the onset of relativistic jet activity from a supermassive black hole. A companion paper comes to similar conclusions on the basis of radio observations. This event is probably due to the tidal disruption of a star falling into a supermassive black hole, but the detailed behaviour differs from current theoretical models of such events.

3.
Nature ; 461(7268): 1258-60, 2009 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-19865166

RESUMEN

Gamma-ray bursts (GRBs) are produced by rare types of massive stellar explosion. Their rapidly fading afterglows are often bright enough at optical wavelengths that they are detectable at cosmological distances. Hitherto, the highest known redshift for a GRB was z = 6.7 (ref. 1), for GRB 080913, and for a galaxy was z = 6.96 (ref. 2). Here we report observations of GRB 090423 and the near-infrared spectroscopic measurement of its redshift, z = 8.1(-0.3)(+0.1). This burst happened when the Universe was only about 4 per cent of its current age. Its properties are similar to those of GRBs observed at low/intermediate redshifts, suggesting that the mechanisms and progenitors that gave rise to this burst about 600,000,000 years after the Big Bang are not markedly different from those producing GRBs about 10,000,000,000 years later.

4.
Sci Total Environ ; 918: 170703, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38325466

RESUMEN

Here we present an original approach to generate 2D high detail riverbed based on a drone photogrammetric survey, and RTK bathymetry measurements for Mera river in the Italian Alps. The aim is to better represent macro-roughness and riverbed structure of the river, also extending it to an ungauged area. Specifically, we apply a step-by-step approach. I) Depth and average slope of the riverbed were calculated from bathymetry data. II) Thus, a trapezoidal channel with constant slope and variable width was defined using the drone images. III) Riffle-pool sequence was assessed as a function of river width and applied to the generated channel. IV) Finally, the semi-random Perlin Noise was added to recreate riverbed irregularities in the natural stream. HEC-RAS 2D hydraulic software was then implemented to assess spatialized water depth and velocity. The proposed methodology could be quite relevant in river hydraulics to decouple roughness coefficient from water submergence, and in Physical Habitat Simulation Model (PHABSIM), where the dependency of the output is not linear with hydraulic parameters (i.e. water depth and velocity). Indeed, we apply PHABSIM for a case study of a stretch of the river and results are compared with a previous environmental study for Mera river.

5.
Nature ; 444(7122): 1050-2, 2006 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-17183317

RESUMEN

Gamma-ray bursts (GRBs) are short, intense flashes of soft gamma-rays coming from the distant Universe. Long-duration GRBs (those lasting more than approximately 2 s) are believed to originate from the deaths of massive stars, mainly on the basis of a handful of solid associations between GRBs and supernovae. GRB 060614, one of the closest GRBs discovered, consisted of a 5-s hard spike followed by softer, brighter emission that lasted for approximately 100 s (refs 8, 9). Here we report deep optical observations of GRB 060614 showing no emerging supernova with absolute visual magnitude brighter than M(V) = -13.7. Any supernova associated with GRB 060614 was therefore at least 100 times fainter, at optical wavelengths, than the other supernovae associated with GRBs. This demonstrates that some long-lasting GRBs can either be associated with a very faint supernova or produced by different phenomena.

6.
Science ; 343(6166): 48-51, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24263134

RESUMEN

Long-duration gamma-ray bursts (GRBs) are an extremely rare outcome of the collapse of massive stars and are typically found in the distant universe. Because of its intrinsic luminosity (L ~ 3 × 10(53) ergs per second) and its relative proximity (z = 0.34), GRB 130427A reached the highest fluence observed in the γ-ray band. Here, we present a comprehensive multiwavelength view of GRB 130427A with Swift, the 2-meter Liverpool and Faulkes telescopes, and by other ground-based facilities, highlighting the evolution of the burst emission from the prompt to the afterglow phase. The properties of GRB 130427A are similar to those of the most luminous, high-redshift GRBs, suggesting that a common central engine is responsible for producing GRBs in both the contemporary and the early universe and over the full range of GRB isotropic energies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA