RESUMEN
Water has significantly high absorption around 3â µm wavelength region, originated by its fundamental OH vibrational modes. Here, we successfully demonstrate an opto-thermal manipulation of particles utilizing a 3â µm mid-infrared Er:ZBLAN fiber laser (adjustable from 2700 to 2826â nm) that can efficiently elevate the temperature at a laser focus with a low laser power. The 3â µm laser indeed accelerates the formation of the particle assembly by simply irradiating the laser into water. By altering the laser wavelengths, the assembling speed and size, instantaneous particle velocity, particle distribution, trapping stiffness and temperature elevation are evaluated systematically. We propose that the dynamics of particle assembly can be understood through thermo-osmotic slip flows, taking into account the effects of volume heating within the focal cone and point heating at the focus.
RESUMEN
We have developed a chirped pulse amplification system for ultrashort 1300 nm pulses based on praseodymium-doped fluoride fibers (Pr:ZBLAN). The 1300 nm seed pulse is generated through soliton-dispersive wave coupling in a highly nonlinear fiber pumped by a pulse from an erbium-doped fiber laser. The seed pulse is stretched with a grating stretcher to â¼150 ps and amplified with a two-stage Pr:ZBLAN amplifier. The average power reaches â¼112 mW at the repetition rate of 40 MHz. The pulse is compressed to 225 fs by using a pair of gratings without serious phase distortion.
RESUMEN
Generation of 265-fs millijoule pulses at 1940 nm from a solid-state regenerative amplifier has been demonstrated. The amplification chain consists of a thulium-doped fluoride (Tm:ZBLAN) fiber oscillator, a two stage Tm:ZBLAN fiber preamplifier, and a regenerative amplifier with a thermoelectrically cooled thulium-doped yttrium aluminium perovskite crystal. The newly developed light source is used for pumping an ultra broadband mid-infrared optical parametric amplifier based on a gallium selenide crystal. The 2.5-4 µm range of a multioctave supercontinuum, generated in a polarization-maintaining ZBALN fiber, is used as the MIR seed. The amplified signal in combination with the corresponding idler pulses spread from 2.5 to 10 µm in a collinear geometry.
RESUMEN
We present a new, to the best of our knowledge, approach for the measurement of the localized electric field distribution in air using electric field induced second harmonic generation combined with a microscopic imaging technique. This method only needs two snapshot second harmonic images with orthogonal polarizations to obtain the two-dimensional spatial distribution of the intensity and direction of the electric field. The distribution of a local electric field was clearly measured with a spatial resolution of 8.8 µm by using this method. The measurement of a single second harmonic image takes 5 s by using a 5 kHz repetition rate femtosecond laser.
RESUMEN
We propose a method for opto-thermophoretic trapping with a 2 µm Tm-doped fiber laser. The infrared continuous-wave laser beam is directly and strongly absorbed by water solution, and some local temperature gradient is generated around a focus. The particles are migrated along the temperature gradient, and form a hexagonal close-packed structure at a bottom-glass solution interface. On the other hand, the particles are not trapped in heavy water which does not absorb 2 µm light. The fact indicates that the local temperature elevation is the origin of this phenomenon. We have investigated the dependence of the phenomenon on the material, particle size, and laser power. To the best of our knowledge, 2 µm is the longest wavelength used for the opto-thermophoretic trapping.
RESUMEN
We present a highly stable polarization-maintained supercontinuum (SC) using a setup solely based on ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fibers. The pumping source consists of a femtosecond master oscillator fiber amplifier based on thulium-doped ZBLAN fibers. It provides multi-watts of output power with the center wavelength of 1920 nm at 1 MHz repetition rate. The SC generated by pumping an elliptical core passive single-mode ZBLAN fiber spans from 350 nm to 4.5 µm and exhibits high stability. We characterized the SC pulse using sum-frequency cross-correlation frequency resolved optical gating.
RESUMEN
We have experimentally demonstrated the generation of sub-half-cycle phase-stable pulses with the carrier wavelength of 10.2 µm through two-color filamentation in nitrogen. The carrier-envelope phase (CEP) of the MIR pulse is passively stabilized and controlled by the attosecond time delay between the two-color input pulses. The duration of the MIR pulse is 13.7 fs, which corresponds to 0.402 cycles. The absolute value of the CEP of the generated sub-half-cycle pulse is consistent with a simple four-wave difference frequency generation model. We have also found that the 10 kHz repetition rate of the light source causes the fluctuation of the pulse energy on a few hundred millisecond time scale.
RESUMEN
We present mid-infrared (MIR) supercontinuum generation in polarization-maintained ZBLAN fibers pumped by 2 µm femtosecond pulses from a Tm:YAP regenerative amplifier. A stable supercontinuum that spreads from 380 nm to 4 µm was generated by coupling only 0.5 µJ pulse energy into an elliptical core ZBLAN fiber. The supercontinuum was characterized using cross-correlation frequency-resolved optical gating (XFROG). The complex structure of the XFROG trace due to the pulse-to-pulse spectrum instability have been fixed by reducing the length of the applied fibers or improving the quality of the incident pulse spectrum.
RESUMEN
We present an infrared source operating at 1937 nm center wavelength capable of generating 1.35 mJ pulse energies with 1 kHz repetition rate and 2 GW peak power based on a diode-pumped Tm:YAP regenerative amplifier. The obtained pulses after 45 round trips have been compressed down to 360 fs. Using only a small portion (15 µJ) of the output of the system we managed to generate a white light continuum in a 3 mm YAG window that exhibits the viability of the system as a suitable candidate for a pumping source of a mid-infrared optical parametric amplifier.
RESUMEN
Carrier-envelope-phase (CEP) controlled subcycle midinfrared pulses generated through two-color filamentation have been applied for high-harmonic (HH) generation in a crystalline silicon (Si) membrane. The HH spectrum reaches the ultraviolet region (<300 nm), beyond the direct band gap of Si. The shape of the HH spectrum strongly depends on the CEP. The complex CEP dependence can be explained with the interference between different orders of the harmonics. The complete waveform characterization of the subcycle driver pulse using frequency-resolved optical gating capable of CEP determination plays a crucial role for investigation of the subcycle dynamics.
RESUMEN
We demonstrate direct generation of sub-50 fs pulses from a thulium-doped fiber amplifier. Broad spectra are obtained by exploiting nonlinear effects within the amplifier fiber itself. High fractional inversion densities of thulium ions achieved by a core-pumping scheme helped to extend spectra into the shorter wavelength region around 1.7 µm. Pulses with a duration of 48 fs are obtained at an average power of 2.5 W directly after the amplifier fiber, i.e., without using a compressor.
RESUMEN
Carrier-envelope phase (CEP) of single-cycle pulses generated through two-color filamentation has been investigated. We have observed a particular behavior of the phase: the phase of high-frequency components of the generated pulses changes continuously and linearly with the relative phase between the two-color input pulses, whereas the phase of the low-frequency components takes only two discrete values. The transition of the phase behavior has been clearly observed by using frequency-resolved optical gating capable of CEP determination. We have found out that such a phase behavior is a unique feature of single-cycle pulses generated with a passive CEP stabilization scheme.
RESUMEN
An ultrafast, passively mode-locked fiber laser oscillator has been realized using thulium-doped ZBLAN fibers. Very low dispersion of ZBLAN glass fibers enabled generation of pulses with broad spectra extending from 1730 nm to 2050 nm. Pulses are obtained with the average power of 13 mW at the repetition rate of 67.5 MHz when the pump power is 140 mW. The output pulses are compressed with a pair of SF10 prisms and their durations are measured with SHG FROG, from which we obtained the pulse duration as short as 45 fs.
RESUMEN
Chirped-pulse upconversion technique has been applied to attenuated total reflectance (ATR) infrared spectroscopy. An extremely broadband infrared pulse was sent to an ATR diamond prism and the reflected pulse was converted to the visible by using four-wave mixing in krypton gas. Absorption spectra of liquids in the range from 200 to 5500 cm(-1) were measured with a visible spectrometer on a single-shot basis. The system was applied to observe the dynamics of exchanging process of two solvents, water and acetone, which give clear vibrational spectral contrast. We observed that the exchange was finished within â¼ 10 ms.
Asunto(s)
Luz , Acetona/química , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Agua/químicaRESUMEN
Recent interest in particle sorting using optical forces has grown due to its ability to separate micro- and nanomaterials based on their optical properties. Here, we present a mid-infrared optical force manipulation technique that enables precise sorting of microspheres based on their molecular vibrational properties using a mid-infrared quantum cascade laser. Utilizing the optical pushing force driven by a 9.3 µm mid-infrared evanescent field generated on a prism through total internal reflection, a variety of microspheres, including those composed of Si-O-Si bonds, can be separated in accordance with their absorbance values at 9.3 µm. The experimental results are in good agreement with the optical force calculations using finite-difference time-domain simulation. Thus, each microsphere's displacement and velocity can be predicted from the absorbance value; conversely, the optical properties (e.g., absorbance and complex refractive index in the mid-infrared region) of individual microspheres can be estimated by monitoring their velocity.
RESUMEN
Mid-infrared spectroscopy probes molecular vibrations to identify chemical species and functional groups. Therefore, mid-infrared hyperspectral imaging is one of the most powerful and promising candidates for chemical imaging using optical methods. Yet high-speed and entire bandwidth mid-infrared hyperspectral imaging has not been realized. Here we report a mid-infrared hyperspectral chemical imaging technique that uses chirped pulse upconversion of sub-cycle pulses at the image plane. This technique offers a lateral resolution of 15 µm, and the field of view is adjustable between 800 µm × 600 µm to 12 mm × 9 mm. The hyperspectral imaging produces a 640 × 480 pixel image in 8 s, which covers a spectral range of 640-3015 cm-1, comprising 1069 wavelength points and offering a wavenumber resolution of 2.6-3.7 cm-1. For discrete frequency mid-infrared imaging, the measurement speed reaches a frame rate of 5 kHz, the repetition rate of the laser. As a demonstration, we effectively identified and mapped different components in a microfluidic device, plant cell, and mouse embryo section. The great capacity and latent force of this technique in chemical imaging promise to be applied to many fields such as chemical analysis, biology, and medicine.
RESUMEN
Multiphoton microscopy has enabled us to image cellular dynamics in vivo. However, the excitation wavelength for imaging with commercially available lasers is mostly limited between 0.65-1.04 µm. Here we develop a femtosecond fiber laser system that produces â¼150 fs pulses at 1.8 µm. Our system starts from an erbium-doped silica fiber laser, and its wavelength is converted to 1.8 µm using a Raman shift fiber. The 1.8 µm pulses are amplified with a two-stage Tm:ZBLAN fiber amplifier. The final pulse energy is â¼1 µJ, sufficient for in vivo imaging. We successfully observe TurboFP635-expressing cortical neurons at a depth of 0.7 mm from the brain surface by three-photon excitation and Clover-expressing astrocytes at a depth of 0.15 mm by four-photon excitation.
RESUMEN
Sub-single-cycle pulses in the mid-infrared (MIR) region were generated through a conical emission from a laser-induced filament. Fundamental and second-harmonic pulses of 25-fs Ti:sapphire amplifier output were focused into argon to produce phase-stable broadband MIR pulses in a well-focusable ring-shaped beam. The beam profile and spectrum of the MIR field are accurately reproduced with a simple calculation based on a four-wave mixing process. The ring-shaped pattern of the MIR beam originates from a dramatic confocal-parameter mismatch between the MIR field and the laser beams.
RESUMEN
Ultrafast internal conversion of benzene and toluene from the S(2) states was studied by time-resolved photoelectron imaging with a time resolution of 22 fs. Time-energy maps of the photoelectron intensity and the angular anisotropy were generated from a series of photoelectron images. The photoelectron kinetic energy distribution exhibits a rapid energy shift and intensity revival, which indicates nuclear motion on the S(2) adiabatic surface, while the ultrafast evolution of the angular anisotropy revealed a change in the electronic character of the S(2) adiabatic surface. From their decay profiles of the total photoelectron intensity, the time constants of 48 ± 4 and 62 ± 4 fs were determined for the population decay from the S(2) states in benzene and toluene, respectively.
RESUMEN
A nonadiabatic electronic transition through a conical intersection was studied by pump-probe photoelectron imaging spectroscopy with a 22 fs time resolution in the benchmark polyatomic molecule of pyrazine and deuterated pyrazine. The lifetimes of the S(2) state of pyrazine and deuterated pyrazine were determined to be 22+/-3 fs by the global fitting of the time-energy maps of photoelectron kinetic energy (PKE) distributions. The lifetime of S(3) was determined to be 40-43 fs. Two-dimensional maps of photoelectron distributions were obtained for time (t) and PKE, and individual PKE distributions upon ionization from S(2) and S(1) were extracted. Quantum beat with an approximately 50 fs period was observed after the S(2)-->S(1) internal conversion, which was attributed to the totally symmetric vibration nu(6a) in S(1).