Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Genes Cells ; 29(1): 73-85, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38016691

RESUMEN

Bladder cancer is a urothelial cancer and effective therapeutic strategies for its advanced stages are limited. Here, we report that CD271, a neurotrophin receptor, promotes the proliferation and migration of bladder cancer cells. CD271 knockdown decreased proliferation in both adherent and spheroid cultures, and vice versa when CD271 was overexpressed in bladder cancer cell lines. CD271 depletion impaired tumorigenicity in vivo. Migration activity was reduced by CD271 knockdown and TAT-Pep5, a known CD271-Rho GDI-binding inhibitor. Apoptosis was induced by CD271 knockdown. Comprehensive gene expression analysis revealed alterations in E2F- and Myc-related pathways upon CD271 expression. In clinical cases, patients with high CD271 expression showed significantly shortened overall survival. In surgically resected specimens, pERK, a known player in proliferation signaling, colocalizes with CD271. These data indicate that CD271 is involved in bladder cancer malignancy by promoting cell proliferation and migration, resulting in poor prognosis.


Asunto(s)
Receptores de Factor de Crecimiento Nervioso , Neoplasias de la Vejiga Urinaria , Humanos , Adapaleno , Receptores de Factor de Crecimiento Nervioso/genética , Proliferación Celular , Transducción de Señal , Neoplasias de la Vejiga Urinaria/genética , Movimiento Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica
2.
Cancer Sci ; 115(7): 2346-2359, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710200

RESUMEN

RNAs, such as noncoding RNA, microRNA, and recently mRNA, have been recognized as signal transduction molecules. CD271, also known as nerve growth factor receptor, has a critical role in cancer, although the precise mechanism is still unclear. Here, we show that CD271 mRNA, but not CD271 protein, facilitates spheroid cell proliferation. We established CD271-/- cells lacking both mRNA and protein of CD271, as well as CD271 protein knockout cells lacking only CD271 protein, from hypopharyngeal and oral squamous cell carcinoma lines. Sphere formation was reduced in CD271-/- cells but not in CD271 protein knockout cells. Mutated CD271 mRNA, which is not translated to a protein, promoted sphere formation. CD271 mRNA bound to hnRNPA2B1 protein at the 3'-UTR region, and the inhibition of this interaction reduced sphere formation. In surgical specimens, the CD271 mRNA/protein expression ratio was higher in the cancerous area than in the noncancerous area. These data suggest CD271 mRNA has dual functions, encompassing protein-coding and noncoding roles, with its noncoding RNA function being predominant in oral and head and neck squamous cell carcinoma.


Asunto(s)
Neoplasias de Cabeza y Cuello , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , Neoplasias de la Boca , Proteínas del Tejido Nervioso , ARN Mensajero , Receptores de Factor de Crecimiento Nervioso , Carcinoma de Células Escamosas de Cabeza y Cuello , Femenino , Humanos , Masculino , Regiones no Traducidas 3' , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo
3.
Cancer Sci ; 115(6): 1896-1909, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38480477

RESUMEN

Cholangiocarcinoma (CCA) is one of the most difficult malignancies to treat as the therapeutic options are limited. Although several driver genes have been identified, most remain unknown. In this study, we identified a failed axon connection homolog (FAXC), whose function is unknown in mammals, by analyzing serially passaged CCA xenograft models. Knockdown of FAXC reduced subcutaneous tumorigenicity in mice. FAXC was bound to annexin A2 (ANXA2) and c-SRC, which are tumor-promoting genes. The FAXC/ANXA2/c-SRC complex forms in the mitochondria. FAXC enhances SRC-dependent ANXA2 phosphorylation at tyrosine-24, and the C-terminal amino acid residues (351-375) of FAXC are required for ANXA2 phosphorylation. Transcriptome data from a xenografted CCA cell line revealed that FAXC correlated with epithelial-mesenchymal transition, hypoxia, and KRAS signaling genes. Collectively, these findings advance our understanding of CCA tumorigenesis and provide candidate therapeutic targets.


Asunto(s)
Anexina A2 , Neoplasias de los Conductos Biliares , Carcinogénesis , Colangiocarcinoma , Mitocondrias , Familia-src Quinasas , Animales , Humanos , Masculino , Ratones , Anexina A2/metabolismo , Anexina A2/genética , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias de los Conductos Biliares/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/patología , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Mitocondrias/metabolismo , Fosforilación , Transducción de Señal , Familia-src Quinasas/metabolismo , Familia-src Quinasas/genética
4.
Cancer Sci ; 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39113435

RESUMEN

Cholangiocarcinoma is a fatal disease with limited therapeutic options. We screened genes required for cholangiocarcinoma tumorigenicity and identified FADS2, a delta-6 desaturase. FADS2 depletion reduced in vivo tumorigenicity and cell proliferation. In clinical samples, FADS2 was expressed in cancer cells but not in stromal cells. FADS2 inhibition also reduced the migration and sphere-forming ability of cells and increased apoptotic cell death and ferroptosis markers. Lipidome assay revealed that triglyceride and cholesterol ester levels were decreased in FADS2-knockdown cells. The oxygen consumption ratio was also decreased in FADS2-depleted cells. These data indicate that FADS2 depletion causes a reduction in lipid levels, resulting in decrease of energy production and attenuation of cancer cell malignancy.

5.
Biochem Biophys Res Commun ; 655: 59-67, 2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36933308

RESUMEN

Gastric cancer is the fifth most common malignancy worldwide. However, targeted therapy for advanced gastric cancer is still limited. Here, we report BEX2 (Brain expressed X-linked 2) as a poor prognostic factor in two gastric cancer cohorts. BEX2 expression was increased in spheroid cells, and its knockdown decreased aldefluor activity and cisplatin resistance. BEX2 was found to upregulate CHRNB2 (Cholinergic Receptor Nicotinic Beta 2 Subunit) expression, a cancer stemness-related gene, in a transcriptional manner, and the knockdown of which also decreases aldefluor activity. Collectively, these data are suggestive of the role of BEX2 in the malignant process of gastric cancer, and as a promising therapeutic target.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Pronóstico , Línea Celular Tumoral , Oncogenes , Proteínas del Tejido Nervioso/metabolismo
6.
Cancer Sci ; 113(8): 2878-2887, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35343032

RESUMEN

Various proteins are highly expressed in cancer (e.g., epidermal growth factor receptor); however, the majority are also expressed in normal cells, although they may differ in expression intensity. Recently, we reported that CD271 (nerve growth factor receptor), a glycosylated protein, increases malignant behavior of cancer, particularly stemlike phenotypes in squamous cell carcinoma (SCC). CD271 is expressed in SCC and in normal epithelial basal cells. Glycosylation alterations generally occur in cancer cells; therefore, we attempted to establish a cancer-specific anti-glycosylated CD271 antibody. We purified recombinant glycosylated CD271 protein, immunized mice with the protein, and screened hybridomas using an ELISA assay with cancer cell lines. We established a clone G4B1 against CD271 which is glycosylated with O-glycan and sialic acid. The G4B1 antibody reacted with the CD271 protein expressed in esophageal cancer, but not in normal esophageal basal cells. This specificity was confirmed in hypopharyngeal and cervical cancers. G4B1 antibody recognized the fetal esophageal epithelium and Barrett's esophagus, which possess stem cell-like characteristics. In conclusion, G4B1 antibody could be useful for precise identification of dysplasia and cancer cells in SCC.


Asunto(s)
Esófago de Barrett , Carcinoma de Células Escamosas , Neoplasias Esofágicas , Adapaleno , Animales , Anticuerpos Monoclonales/metabolismo , Esófago de Barrett/patología , Carcinoma de Células Escamosas/patología , Neoplasias Esofágicas/patología , Glicosilación , Inmunohistoquímica , Ratones , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo
7.
Cancer Sci ; 112(11): 4580-4592, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34424582

RESUMEN

Cancer stem cells (CSCs) are responsible for therapy resistance and share several properties with normal stem cells. Here, we show that brain-expressed X-linked gene 2 (BEX2), which is essential for dormant CSCs in cholangiocarcinoma, is highly expressed in human hepatocellular carcinoma (HCC) lesions compared with the adjacent normal lesions and that in 41 HCC cases the BEX2high expression group is correlated with a poor prognosis. BEX2 localizes to Ki67-negative (nonproliferative) cancer cells in HCC tissues and is highly expressed in the dormant fraction of HCC cell lines. Knockdown of BEX2 attenuates CSC phenotypes, including sphere formation ability and aldefluor activity, and BEX2 overexpression enhances these phenotypes. Moreover, BEX2 knockdown increases cisplatin sensitivity, and BEX2 expression is induced by cisplatin treatment. Taken together, these data suggest that BEX2 induces dormant CSC properties and affects the prognosis of patients with HCC.


Asunto(s)
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Células Madre Neoplásicas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Anciano , Aldehído Deshidrogenasa/metabolismo , Animales , Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Colangiocarcinoma/metabolismo , Cisplatino/farmacología , Femenino , Silenciador del Gen , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Masculino , Ratones , Proteínas del Tejido Nervioso/genética , Organoides , Pronóstico , Esferoides Celulares
8.
Biochem Biophys Res Commun ; 537: 132-139, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33412384

RESUMEN

Cancer stem cells (CSCs) are believed to cause cancer metastasis and recurrence. BEX2 (brain expressed X-linked gene 2) is a CSC-related gene that is expressed in dormant CSCs in cholangiocarcinoma and induces resistance against chemotherapy. The aim of the present study was to identify small compounds that have activity to inhibit BEX2 expression and result in the attenuation of CSC-related phenotypes. We screened 9600 small chemical compounds in high-throughput screening using cholangiocarcinoma cell line HuCCT1 expressing BEX2 protein fused with NanoLuc, and identified a compound, BMPP (1, 3-Benzenediol, [4-(4-methoxyphenyl)-1H-pyrazol-3-yl]). BMPP was found to exert decreasing effects on BEX2 protein expression and G0 phase population of the tumor cells, and increasing effects on ATP levels and chemotherapeutic sensitivity of the cells. These findings indicate that BMPP is a valuable chemical compound for reducing dormant CSC-related phenotypes. Thus, the identification of BMPP as a potential CSC suppressor provides scope for the development of novel therapeutic modalities for the treatment of cancers with BEX2 overexpressing CSCs.


Asunto(s)
Antineoplásicos/análisis , Antineoplásicos/farmacología , Descubrimiento de Drogas , Células Madre Neoplásicas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Antineoplásicos/química , Línea Celular Tumoral , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Neoplásicas/efectos de los fármacos , Reproducibilidad de los Resultados
9.
Biosci Biotechnol Biochem ; 84(1): 126-133, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31538545

RESUMEN

Insects must intake sterol compounds because of their inability to synthesize cholesterol de novo. In phytophagous insects, enzymatic conversion of phytosterols to cholesterol involving 24-dehydrocholesterol reductase (DHCR24) exerts to acquire cholesterol. Here, we reported the presence of two DHCR24 homologs in the silkworm Bombyx mori, BmDHCR24-1 and -2, with several transcript variants. Consistent with the data of spatial expression analyses by RT-PCR, predominant enzymatic activity of DHCR24 was observed in B. mori larval midgut whereas weak activity was observed in the other tissues examined. In addition, BmDHCR24-1 expression in HEK293 cells showed an enzymatic activity, but BmDHCR24-2 did not, although both BmDHCR24s were localized in the endoplasmic reticulum, where the mammalian DHCR24s are located to exert their enzymatic activities. The present data indicated that BmDHCR24-1 but not BmDHCR24-2 contributes to conversion of phytosterols to cholesterol mainly in the midgut of the phytophagous lepidopteran larvae.


Asunto(s)
Bombyx/enzimología , Colesterol/biosíntesis , Proteínas de Insectos/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Animales , Células HEK293 , Humanos , Proteínas de Insectos/genética , Larva/enzimología , Túbulos de Malpighi/enzimología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Fitosteroles/metabolismo , Plantas/química , Plásmidos/genética , Homología de Secuencia de Ácido Nucleico , Distribución Tisular , Transcripción Genética , Transfección
10.
Thorac Cancer ; 14(10): 940-952, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36869602

RESUMEN

BACKGROUND: Exposure to environmental carcinogens, such as through smoking, is a major factor in the carcinogenesis of non-small cell lung cancer (NSCLC). However, genetic factors may also contribute. METHODS: To identify candidate tumor suppressor genes for NSCLC, we included 23 patients (10 related pairs and 3 individuals) with NSCLC who had other NSCLC-affected first-degree relatives in a local hospital. Exome analyses for both germline and somatic (NSCLC specimens) DNA were performed for 17 cases. Germline exome data of these 17 cases revealed that most of the short variants were identical to the variants in 14KJPN (a Japanese reference genome panel of more than 14 000 individuals) and only a nonsynonymous variant in the DHODH gene, p.A347T, was shared between a pair of NSCLC patients in the same family. This variant is a known pathogenic variant of the gene for Miller syndrome. RESULTS: Somatic genetic alterations in the exome data of our samples showed frequent mutations in the EGFR and TP53 genes. Principal component analysis of the patterns of 96 types of single nucleotide variants (SNVs) suggested the existence of unique mechanisms inducing somatic SNVs in each family. Delineation of mutational signatures of the somatic SNVs with deconstructSigs for the pair of germline pathogenic DHODH variant-positive cases showed that the mutational signatures of these cases included SBS3 (homologous recombination repair defect), SBS6, 15 (DNA mismatch repair), and SBS7 (ultraviolet exposure), suggesting that disordered pyrimidine production causes increased errors in DNA repair systems in these cases. CONCLUSION: Our results suggest the importance of the detailed collection of data on environmental exposure along with genetic information on NSCLC patients to identify the unique combinations that cause lung tumorigenesis in a particular family.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Dihidroorotato Deshidrogenasa , Mutación , Carcinogénesis/genética , Genómica
11.
Anticancer Res ; 43(11): 5031-5040, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37909987

RESUMEN

BACKGROUND/AIM: Osimertinib is currently used as a first-line treatment for EGFR-mutated non-small cell lung cancer, and the emergence of drug resistance poses a substantial challenge. Liquid biopsy with a multi-gene panel can examine both the molecular mechanisms and possibility of early resistance diagnosis. PATIENTS AND METHODS: We used a molecular barcode library construction kit (Archer® LiquidPlex™) that allowed the analysis of multiple cancer-related genes using cell-free DNA from the plasma samples of patients. We collected plasma from 17 consecutive patients with lung adenocarcinoma at our hospital at various time points and cell-free DNA was extracted and subjected to LiquidPlex analysis. RESULTS: Plasma DNA concentration was not associated with the presence or absence of resistance to osimertinib. The pathological mutations detected using next-generation sequencing in the resistant specimens were in MAP2K1, PIK3CA, TP53, BRAF, and EGFR. Among the recurrent cases, EGFR mutations identified at the initial diagnosis were detected within 6 months before relapse confirmation in four cases (average 88 days). Many of the recurrent cases without detection of known EGFR mutations in the liquid biopsy showed a longer interval between the detection of relapse and the last blood draw for the liquid biopsy (average 255 days). CONCLUSION: Frequent liquid biopsies are useful for identifying known EGFR mutations as markers for early detection of relapse. Several cancer driver mutations were observed, suggesting a variety of mechanisms of resistance in first-line osimertinib-treated lung adenocarcinoma.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Ácidos Nucleicos Libres de Células , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Recurrencia Local de Neoplasia , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Biopsia Líquida , Recurrencia , Receptores ErbB/genética
12.
Cell Rep ; 41(9): 111723, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36450246

RESUMEN

Accurate chromosome segregation requires timely activation of separase, a protease that cleaves cohesin during the metaphase-to-anaphase transition. However, the mechanism that maintains the inactivity of separase prior to this event remains unclear. We provide evidence that separase autocleavage plays an essential role in this process. We show that the inhibition of separase autocleavage results in premature activity before the onset of anaphase, accompanied by the formation of chromosomal bridges and spindle rocking. This deregulation is attributed to the reduced binding of cyclin B1 to separase that occurs during the metaphase-to-anaphase transition. Furthermore, when separase is mutated to render the regulation by cyclin B1 irrelevant, which keeps separase in securin-binding form, the deregulation induced by autocleavage inhibition is rescued. Our results reveal a physiological role of separase autocleavage in regulating separase, which ensures faithful chromosome segregation.


Asunto(s)
Anafase , Segregación Cromosómica , Separasa , Ciclina B1 , Metafase
13.
Sci Rep ; 12(1): 17751, 2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273237

RESUMEN

CD271 (also referred to as nerve growth factor receptor or p75NTR) is expressed on cancer stem cells in hypopharyngeal cancer (HPC) and regulates cell proliferation. Because elevated expression of CD271 increases cancer malignancy and correlates with poor prognosis, CD271 could be a promising therapeutic target; however, little is known about the induction of CD271 expression and especially its promoter activity. In this study, we screened transcription factors and found that RELA (p65), a subunit of nuclear factor kappaB (NF-κB), is critical for CD271 transcription in cancer cells. Specifically, we found that RELA promoted CD271 transcription in squamous cell carcinoma cell lines but not in normal epithelium and neuroblastoma cell lines. Within the CD271 promoter sequence, region + 957 to + 1138 was important for RELA binding, and cells harboring deletions in proximity to the + 1045 region decreased CD271 expression and sphere-formation activity. Additionally, we found that clinical tissue samples showing elevated CD271 expression were enriched in RELA-binding sites and that HPC tissues showed elevated levels of both CD271 and phosphorylated RELA. These data suggested that RELA increases CD271 expression and that inhibition of RELA binding to the CD271 promoter could be an effective therapeutic target.


Asunto(s)
Neoplasias Hipofaríngeas , Humanos , Adapaleno , Proliferación Celular/genética , Neoplasias Hipofaríngeas/genética , Neoplasias Hipofaríngeas/metabolismo , Neoplasias Hipofaríngeas/patología , FN-kappa B/genética , FN-kappa B/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptores de Factor de Crecimiento Nervioso/metabolismo , Factor de Transcripción ReIA/genética , Factor de Transcripción ReIA/metabolismo
14.
Mol Genet Genomic Med ; 10(3): e1884, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35128829

RESUMEN

Carney complex (CNC) is a rare hereditary syndrome that involves endocrine dysfunction and the development of various types of tumors. Chromosome 2p16 and PRKAR1A on chromosome 17 are known susceptibility loci for CNC. Here we report a mother and son with CNC caused by an 8.57-kb deletion involving the transcription start site and non-coding exon 1 of PRKAR1A. The proband is a 28-year-old male with bilateral large-cell calcified Sertoli cell testicular tumors and pituitary adenoma. Comprehensive genomic profiling for cancer mutations using Foundation One CDx failed to detect any mutations in PRKAR1A in DNA from the testicular tumor. Single-nucleotide polymorphism array analysis of the proband's genomic DNA revealed a large deletion in the 5' region of PRKAR1A. Genomic walking further delineated the region an 8.57-kb deletion. A 1.68-kb DNA fragment encompassed by the deleted region showed strong promoter activity in a NanoLuc luciferase reporter assay. The patient's mother, who is suffering from recurrent cardiac myxoma, a critical sign for CNC, carried an identical deletion. The 8.57-kb deleted region is a novel lesion for CNC and will facilitate molecular diagnosis of the disease.


Asunto(s)
Complejo de Carney , Mixoma , Adulto , Complejo de Carney/diagnóstico , Complejo de Carney/genética , Complejo de Carney/patología , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Exones , Humanos , Luciferasas , Masculino , Mixoma/genética , Mixoma/patología
15.
Front Physiol ; 12: 824261, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35111082

RESUMEN

Cancer tissue consists of heterogenous cell types, and cancer stem cells (CSCs) are a subpopulation of the tissue which possess therapy resistance, tumor reconstruction capability, and are responsible for metastasis. Intrahepatic cholangiocarcinoma (iCCA) is one of the most common type of liver cancer that is highly aggressive with poor prognosis. Since no target therapy is efficient in improving patient outcomes, new therapeutic approaches need to be developed. CSC is thought to be a promising therapeutic target because of its resistance to therapy. Accumulating evidences suggests that there are many factors (surface marker, stemness-related genes, etc.) and mechanisms (epithelial-mesenchymal transition, mitochondria activity, etc.) which are linked to CSC-like phenotypes. Nevertheless, limited studies are reported about the application of therapy using these mechanisms, suggesting that more precise understandings are still needed. In this review, we overview the molecular mechanisms which modulate CSC-like phenotypes, and discuss the future perspective for targeting CSC in iCCA.

16.
Gynecol Oncol Rep ; 38: 100847, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34557579

RESUMEN

OBJECTIVE: Ovarian cancer (OC) is an intractable gynecological tumor, and frequent recurrence is experienced within a few years even after the complete eradication of tumor tissues by radical resection and neo-adjuvant chemotherapies. The conventional recurrence marker, CA125, is widely used for follow-up after resection of OC, but CA125 has a long half-life in blood and lacks dynamic responses to tumor recurrence. Recent developments in liquid biopsy procedures are expected to overcome the difficulties in early diagnosis of OC recurrence after surgery. METHODS: We applied droplet digital PCR (ddPCR) technology to detect circulating tumor-derived DNA in OC patients' plasma during follow-up. Exome sequencing of 11 tumor-normal pairs of genomic DNA from consecutive OC patients identified tumor-specific mutations, and ddPCR probes were selected for each sample. RESULTS: Six of 11 cases showed apparent recurrence during follow-up (mean progression-free survival was 348.3 days) and all six cases were positive in ddPCR analyses. In addition, ddPCR became positive before increased plasma CA125 in five out of six cases. Increased allele frequency of circulating tumor DNA (ctDNA) is associated with increased tumor volume after recurrence. ddPCR detected ctDNA signals significantly earlier than increased CA125 in the detection of OC recurrence by imaging (49 days and 7 days before, respectively: p < 0.05). No ctDNA was detected in the plasma of recurrence-free cases. CONCLUSIONS: Our results demonstrate the potential of identifying ctDNA by ddPCR as an early detection tool for OC recurrence.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA