RESUMEN
Epyrifenacil (trademark name: Rapidicil®), a novel protoporphyrinogen oxidase (PPO)-inhibiting herbicide, induces hepatocellular adenomas and carcinomas in male CD-1 mice after 78 weeks treatment. The mode of action (MOA) of these mouse liver tumors and their relevance to humans was assessed based on the 2006 International Programme on Chemical Safety (IPCS) Human Relevance Framework. Epyrifenacil is not genotoxic and induced liver tumors via the postulated porphyria-mediated cytotoxicity MOA with the following key events: (#1) PPO inhibition; (#2) porphyrin accumulation; (#3) hepatocellular injury; with (#4) subsequent regenerative cell proliferation; and ultimately (#5) development of liver tumors. This article evaluates the weight of evidence for this MOA based on the modified Bradford Hill criteria. The MOA data were aligned with the dose and temporal concordance, biological plausibility, coherence, strength, consistency, and specificity for a porphyria-mediated cytotoxicity MOA while excluding other alternative MOAs. Although the postulated MOA could qualitatively potentially occur in humans, we demonstrate that it is unlikely to occur in humans because of quantitative toxicodynamic and toxicokinetic differences between mice and humans. Therefore, this MOA is considered not relevant to humans, utilizing the IPCS Human Relevance Framework; consequently, a nonlinear, threshold dose response would be appropriate for human risk assessment.
Asunto(s)
Carcinógenos , Neoplasias Hepáticas , Humanos , Ratones , Masculino , Animales , Neoplasias Hepáticas/inducido químicamente , Neoplasias Hepáticas/patología , Proliferación Celular , Medición de RiesgoRESUMEN
Porphyrinogenic compounds are known to induce porphyria-mediated hepatocellular injury and subsequent regenerative proliferation in rodents, ultimately leading to hepatocellular tumor induction. However, an appropriate in vivo experimental model to evaluate an effect of porphyrinogenic compounds on human liver has not been fully established. Recently, the chimeric mouse with humanized liver (PXB mice) became widely used as a humanized model in which human hepatocytes are transplanted. In the present study, we examined the utility of PXB mice as an in vivo experimental model to evaluate the key events of the porphyria-mediated cytotoxicity mode of action (MOA) in humans. The treatment of PXB mice with 5-aminolevulinic acid, a representative porphyrinogenic compound, for 28 days caused protoporphyrin IX accumulation, followed by hepatocyte necrosis, increased mitosis, and an increase in replicative DNA synthesis in human hepatocytes, indicative of cellular injury and regenerative proliferation, similar to findings in patients with porphyria or experimental porphyria models and corresponding to the key events of the MOA for porphyria-mediated hepatocellular carcinogenesis. We conclude that the PXB mouse is a useful model to evaluate the key events of the porphyria-mediated cytotoxicity MOA in humans and suggest the utility of PXB mice for clarifying the human relevancy of findings in mice.
Asunto(s)
Hígado , Porfirias , Animales , Quimera , Modelos Animales de Enfermedad , Hepatocitos/patología , Hepatocitos/trasplante , Humanos , Hígado/patología , Ratones , Porfirias/patologíaRESUMEN
To determine miRNAs and their predicted target proteins regulatory networks which are potentially involved in onset of pulmonary fibrosis in the bleomycin rat model, we conducted integrative miRNA microarray and iTRAQ-coupled LC-MS/MS proteomic analyses, and evaluated the significance of altered biological functions and pathways. We observed that alterations of miRNAs and proteins are associated with the early phase of bleomycin-induced pulmonary fibrosis, and identified potential target pairs by using ingenuity pathway analysis. Using the data set of these alterations, it was demonstrated that those miRNAs, in association with their predicted target proteins, are potentially involved in canonical pathways reflective of initial epithelial injury and fibrogenic processes, and biofunctions related to induction of cellular development, movement, growth, and proliferation. Prediction of activated functions suggested that lung cells acquire proliferative, migratory, and invasive capabilities, and resistance to cell death especially in the very early phase of bleomycin-induced pulmonary fibrosis. The present study will provide new insights for understanding the molecular pathogenesis of idiopathic pulmonary fibrosis.
Asunto(s)
Bleomicina/toxicidad , Modelos Animales de Enfermedad , MicroARNs/biosíntesis , Proteómica/métodos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/metabolismo , Animales , Redes Reguladoras de Genes/efectos de los fármacos , Redes Reguladoras de Genes/fisiología , Masculino , MicroARNs/genética , Fibrosis Pulmonar/genética , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiologíaRESUMEN
Epyrifenacil, one of the protoporphyrinogen oxidase (PPO)-inhibiting herbicides, is hepatotoxic in rodents. Previous in vitro assays detected species differences in both kinetics (active hepatic uptake) and dynamics (PPO inhibitory activity) of S-3100-CA, which is a causal metabolite of the hepatotoxicity, suggesting that humans are less sensitive to the epyrifenacil-induced hepatotoxicity than are rats and mice. To elucidate the species differences in the epyrifenacil-induced hepatotoxicity between mice and humans simultaneously, this study fed epyrifenacil to chimeric mice with humanized liver with low replacement index of human hepatocytes. The distribution of S-3100-CA in the liver and subsequent protoporphyrin IX (PPIX) accumulation, an index of PPO inhibition, were compared between human and host mouse hepatocytes using mass spectrometry imaging (MSI) analysis of chimeric liver. The results showed that S-3100-CA and PPIX were significantly colocalized in regions of the liver slice containing host mouse hepatocytes, and thus it was suggested that epyrifenacil had significantly less effect on human livers than mouse livers because of the species differences in both kinetics and dynamics of S-3100-CA. Moreover, the hepatic uptake assay using cryopreserved primary hepatocytes of rats, mice and humans with inhibitors revealed that S-3100-CA is a substrate of organic anion transporting polypeptides (OATPs). These data corroborate the contribution of OATPs to hepatocellular uptake of S-3100-CA, especially in mice, and subsequent PPIX accumulation by more potent S-3100-CA-induced PPO inhibition in mice. MSI analysis of chimeric mice with humanized liver is a useful technique for elucidating species differences in pharmacokinetics and subsequent changes in toxicological biomarkers.
Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Hígado , Animales , Hepatocitos , Humanos , Espectrometría de Masas , Ratones , Ratas , Especificidad de la EspecieRESUMEN
A new herbicide, epyrifenacil (S-3100), inhibits protoporphyrinogen oxidase (PPO) in plants. Repeated administration of epyrifenacil in laboratory animals led to some toxicological changes related to PPO inhibition, e.g., hepatotoxicity caused by porphyrin accumulation and anemia caused by the inhibition of heme biosynthesis. In vitro studies revealed that an ester-cleaved metabolite, S-3100-CA, is predominant in mammals, exhibits PPO-inhibitory activity, and thus is the cause of epyrifenacil-induced toxicity. To assess the human risk, the effects of species differences on the dynamics (PPO inhibition) and kinetics (liver uptake) of epyrifenacil were evaluated separately. The results of in vitro assays revealed an approximately tenfold weaker inhibition of PPO by S-3100-CA in humans than in rodents and six- to thirteen-fold less hepatic uptake of S-3100-CA in humans than in mice. Finally, it was suggested that humans are less sensitive to the toxicity of epyrifenacil than are rodents, although further mechanistic research is highly anticipated.
RESUMEN
Apoptosis controls erythroid homeostasis by balancing survival and death of erythroid cells. The mitochondrial pathway of apoptosis involves regulation of apoptotic events caused by the Bcl-2 family proteins, including the anti-apoptotic and pro-apoptotic members. However, little has been reported on the role of the anti-apoptotic Bcl-2 family members in rat late-stage erythroblasts that are no longer erythropoietin (EPO)-dependent. In the present study, to investigate this we analyzed changes in apoptosis-related factors that occurred in vitro. EPO stimulation resulted in reduced apoptotic cell death of the late-stage erythroblasts accompanied by decreased caspase-3 and caspase-9 activities, which is indicative of the induction of apoptosis through the mitochondrial pathway. Analysis of mRNA expression of the Bcl-2 family proteins demonstrated that EPO stimulation up-regulated the Bcl-xL mRNA, resulting in decreases in the mRNA ratios of Bak, Bax, and Bad to Bcl-xL. Also, the mRNA ratios of Bak and Noxa to Mcl-1 were decreased, mainly due to up-regulation of Mcl-1 mRNA. These results showed a close association between reduced apoptotic cell death and increased mRNA levels of Bcl-xL and Mcl-1 in the presence of EPO. Thus, the present study suggests that Bcl-xL may be an important anti-apoptotic factor of rat late-stage erythroblasts as has been reported in murine erythroblasts. Moreover, the results also indicate the possibility that Mcl-1 may act on the rat late-stage erythroblasts as an anti-apoptotic factor.
Asunto(s)
Apoptosis/efectos de los fármacos , Eritroblastos/efectos de los fármacos , Eritropoyetina/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína bcl-X/genética , Animales , Células de la Médula Ósea/citología , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fragmentación del ADN , Eritroblastos/citología , Eritroblastos/metabolismo , Femenino , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-DawleyRESUMEN
The intranuclear disposition of plasmid DNA is highly important for transgene expression. The effects of a left-handedly curved sequence with high histone affinity on transgene expression were examined in COS-7 cells with two kinds of carriers (Lipofectamine Plus and TransIT-LT1). Three plasmids containing the curved sequence at different positions were transfected. The transgene expression was affected by the position of the left-handedly curved sequence, and the sequence at appropriate locations enhanced the expression from plasmid DNAs. However, the position effects on the expression differed from those obtained by electroporation of the same plasmid DNAs in a naked form. In addition, the degree of expression enhancement seemed to depend on the carriers. These results suggest that the left-handedly curved sequence with high histone affinity could increase the transgene expression from a plasmid delivered with carriers.
Asunto(s)
Histonas/administración & dosificación , Lípidos/administración & dosificación , Plásmidos/química , Transfección/métodos , Transgenes/efectos de los fármacos , Animales , Secuencia de Bases , Células COS , Chlorocebus aethiops , Expresión Génica , Indicadores y Reactivos/administración & dosificación , Modelos GenéticosRESUMEN
The intranuclear disposition of a plasmid is extremely important for transgene expression. The effects of a left-handedly curved sequence with high histone affinity on plasmid expression were examined in vivo. A naked luciferase-plasmid was delivered into mouse liver by a hydrodynamics-based injection, and the luciferase activities were quantitated at various time points. The location of the left-handedly curved sequence determined the transgene expression, without affecting the amount of intranuclear exogenous DNA. The plasmid containing the curved sequence at the location that results in the exposure of the TATA box out of the nucleosome core showed the highest expression. These results suggest that sequences with high histone affinity could control transgene expression from plasmids in vivo.