Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 16(6): 599-608, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25915732

RESUMEN

Diverse innate lymphoid cell (ILC) subtypes have been defined on the basis of effector function and transcription factor expression. ILCs derive from common lymphoid progenitors, although the transcriptional pathways that lead to ILC-lineage specification remain poorly characterized. Here we found that the transcriptional regulator TOX was required for the in vivo differentiation of common lymphoid progenitors into ILC lineage-restricted cells. In vitro modeling demonstrated that TOX deficiency resulted in early defects in the survival or proliferation of progenitor cells, as well as ILC differentiation at a later stage. In addition, comparative transcriptome analysis of bone marrow progenitors revealed that TOX-deficient cells failed to upregulate many genes of the ILC program, including genes that are targets of Notch, which indicated that TOX is a key determinant of early specification to the ILC lineage.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Células Asesinas Naturales/fisiología , Subgrupos Linfocitarios/fisiología , Células Progenitoras Linfoides/fisiología , Receptores Notch/metabolismo , Animales , Células de la Médula Ósea/fisiología , Diferenciación Celular/genética , Linaje de la Célula/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Células Cultivadas , Femenino , Proteínas de Homeodominio/genética , Inmunidad Innata/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptores Notch/genética , Transcriptoma
2.
BMC Cancer ; 15: 22, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25632947

RESUMEN

BACKGROUND: A breast cancer susceptibility locus has been mapped to the gene encoding TOX3. Little is known regarding the expression pattern or biological role of TOX3 in breast cancer or in the mammary gland. Here we analyzed TOX3 expression in murine and human mammary glands and in molecular subtypes of breast cancer, and assessed its ability to alter the biology of breast cancer cells. METHODS: We used a cell sorting strategy, followed by quantitative real-time PCR, to study TOX3 gene expression in the mouse mammary gland. To study the expression of this nuclear protein in human mammary glands and breast tumors, we generated a rabbit monoclonal antibody specific for human TOX3. In vitro studies were performed on MCF7, BT474 and MDA-MB-231 cell lines to study the effects of TOX3 modulation on gene expression in the context of breast cancer cells. RESULTS: We found TOX3 expression in estrogen receptor-positive mammary epithelial cells, including progenitor cells. A subset of breast tumors also highly expresses TOX3, with poor outcome associated with high expression of TOX3 in luminal B breast cancers. We also demonstrate the ability of TOX3 to alter gene expression in MCF7 luminal breast cancer cells, including cancer relevant genes TFF1 and CXCR4. Knockdown of TOX3 in a luminal B breast cancer cell line that highly expresses TOX3 is associated with slower growth. Surprisingly, TOX3 is also shown to regulate TFF1 in an estrogen-independent and tamoxifen-insensitive manner. CONCLUSIONS: These results demonstrate that high expression of this protein likely plays a crucial role in breast cancer progression. This is in sharp contrast to previous studies that indicated breast cancer susceptibility is associated with lower expression of TOX3. Together, these results suggest two different roles for TOX3, one in the initiation of breast cancer, potentially related to expression of TOX3 in mammary epithelial cell progenitors, and another role for this nuclear protein in the progression of cancer. In addition, these results can begin to shed light on the reported association of TOX3 expression and breast cancer metastasis to the bone, and point to TOX3 as a novel regulator of estrogen receptor-mediated gene expression.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Células Epiteliales/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptores de Estrógenos/metabolismo , Receptores de Progesterona/genética , Animales , Proteínas Reguladoras de la Apoptosis , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/genética , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Proteínas del Grupo de Alta Movilidad , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ligandos , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Ratones , Pronóstico , Receptores de Progesterona/metabolismo , Transactivadores
3.
Scand J Gastroenterol ; 50(9): 1076-87, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25865706

RESUMEN

OBJECTIVE: Breath testing and duodenal culture studies suggest that a significant proportion of irritable bowel syndrome (IBS) patients have small intestinal bacterial overgrowth. In this study, we extended these data through 16S rDNA amplicon sequencing and quantitative PCR (qPCR) analyses of duodenal aspirates from a large cohort of IBS, non-IBS and control subjects. MATERIALS AND METHODS: Consecutive subjects presenting for esophagogastroduodenoscopy only and healthy controls were recruited. Exclusion criteria included recent antibiotic or probiotic use. Following extensive medical work-up, patients were evaluated for symptoms of IBS. DNAs were isolated from duodenal aspirates obtained during endoscopy. Microbial populations in a subset of IBS subjects and controls were compared by 16S profiling. Duodenal microbes were then quantitated in the entire cohort by qPCR and the results compared with quantitative live culture data. RESULTS: A total of 258 subjects were recruited (21 healthy, 163 non-healthy non-IBS, and 74 IBS). 16S profiling in five IBS and five control subjects revealed significantly lower microbial diversity in the duodenum in IBS, with significant alterations in 12 genera (false discovery rate < 0.15), including overrepresentation of Escherichia/Shigella (p = 0.005) and Aeromonas (p = 0.051) and underrepresentation of Acinetobacter (p = 0.024), Citrobacter (p = 0.031) and Microvirgula (p = 0.036). qPCR in all 258 subjects confirmed greater levels of Escherichia coli in IBS and also revealed increases in Klebsiella spp, which correlated strongly with quantitative culture data. CONCLUSIONS: 16S rDNA sequencing confirms microbial overgrowth in the small bowel in IBS, with a concomitant reduction in diversity. qPCR supports alterations in specific microbial populations in IBS.


Asunto(s)
ADN Bacteriano/análisis , ADN Bacteriano/aislamiento & purificación , Duodeno/microbiología , Heces/microbiología , Microbioma Gastrointestinal/genética , Síndrome del Colon Irritable/microbiología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Endoscopía Gastrointestinal , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Reacción en Cadena en Tiempo Real de la Polimerasa
4.
Am J Hum Genet ; 87(4): 532-7, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20869035

RESUMEN

Diaphanospondylodysostosis (DSD) is a rare, recessively inherited, perinatal lethal skeletal disorder. The low frequency and perinatal lethality of DSD makes assembling a large set of families for traditional linkage-based genetic approaches challenging. By searching for evidence of unknown ancestral consanguinity, we identified two autozygous intervals, comprising 34 Mbps, unique to a single case of DSD. Empirically testing for ancestral consanguinity was effective in localizing the causative variant, thereby reducing the genomic space within which the mutation resides. High-throughput sequence analysis of exons captured from these intervals demonstrated that the affected individual was homozygous for a null mutation in BMPER, which encodes the bone morphogenetic protein-binding endothelial cell precursor-derived regulator. Mutations in BMPER were subsequently found in three additional DSD cases, confirming that defects in BMPER produce DSD. Phenotypic similarities between DSD and Bmper null mice indicate that BMPER-mediated signaling plays an essential role in vertebral segmentation early in human development.


Asunto(s)
Proteína Morfogenética Ósea 2/genética , Consanguinidad , Disostosis/genética , Transducción de Señal/genética , Columna Vertebral/embriología , Espondilólisis/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Genes Recesivos/genética , Homocigoto , Humanos , Ratones , Datos de Secuencia Molecular , Mutación/genética , Linaje , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN
5.
N Engl J Med ; 362(3): 206-16, 2010 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-20089971

RESUMEN

BACKGROUND: Establishing the genetic basis of phenotypes such as skeletal dysplasia in model organisms can provide insights into biologic processes and their role in human disease. METHODS: We screened mutagenized mice and observed a neonatal lethal skeletal dysplasia with an autosomal recessive pattern of inheritance. Through genetic mapping and positional cloning, we identified the causative mutation. RESULTS: Affected mice had a nonsense mutation in the thyroid hormone receptor interactor 11 gene (Trip11), which encodes the Golgi microtubule-associated protein 210 (GMAP-210); the affected mice lacked this protein. Golgi architecture was disturbed in multiple tissues, including cartilage. Skeletal development was severely impaired, with chondrocytes showing swelling and stress in the endoplasmic reticulum, abnormal cellular differentiation, and increased cell death. Golgi-mediated glycosylation events were altered in fibroblasts and chondrocytes lacking GMAP-210, and these chondrocytes had intracellular accumulation of perlecan, an extracellular matrix protein, but not of type II collagen or aggrecan, two other extracellular matrix proteins. The similarities between the skeletal and cellular phenotypes in these mice and those in patients with achondrogenesis type 1A, a neonatal lethal form of skeletal dysplasia in humans, suggested that achondrogenesis type 1A may be caused by GMAP-210 deficiency. Sequence analysis revealed loss-of-function mutations in the 10 unrelated patients with achondrogenesis type 1A whom we studied. CONCLUSIONS: GMAP-210 is required for the efficient glycosylation and cellular transport of multiple proteins. The identification of a mutation affecting GMAP-210 in mice, and then in humans, as the cause of a lethal skeletal dysplasia underscores the value of screening for abnormal phenotypes in model organisms and identifying the causative mutations.


Asunto(s)
Condrocitos/citología , Codón sin Sentido , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Animales , Diferenciación Celular , Proliferación Celular , Proteínas del Citoesqueleto , Retículo Endoplásmico/ultraestructura , Genes Recesivos , Glicosilación , Aparato de Golgi/ultraestructura , Humanos , Ratones , Ratones Mutantes , Proteínas Nucleares/deficiencia , Fenotipo , Polimorfismo de Nucleótido Simple , Procesamiento Proteico-Postraduccional/fisiología , Análisis de Secuencia de ADN
6.
Am J Hum Genet ; 84(1): 72-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19110214

RESUMEN

Analysis of a nuclear family with three affected offspring identified an autosomal-recessive form of spondyloepimetaphyseal dysplasia characterized by severe short stature and a unique constellation of radiographic findings. Homozygosity for a haplotype that was identical by descent between two of the affected individuals identified a locus for the disease gene within a 17.4 Mb interval on chromosome 15, a region containing 296 genes. These genes were assessed and ranked by cartilage selectivity with whole-genome microarray data, revealing only two genes, encoding aggrecan and chondroitin sulfate proteoglycan 4, that were selectively expressed in cartilage. Sequence analysis of aggrecan complementary DNA from an affected individual revealed homozygosity for a missense mutation (c.6799G --> A) that predicts a p.D2267N amino acid substitution in the C-type lectin domain within the G3 domain of aggrecan. The D2267 residue is predicted to coordinate binding of a calcium ion, which influences the conformational binding loops of the C-type lectin domain that mediate interactions with tenascins and other extracellular-matrix proteins. Expression of the normal and mutant G3 domains in mammalian cells showed that the mutation created a functional N-glycosylation site but did not adversely affect protein trafficking and secretion. Surface-plasmon-resonance studies showed that the mutation influenced the binding and kinetics of the interactions between the aggrecan G3 domain and tenascin-C. These findings identify an autosomal-recessive skeletal dysplasia and a significant role for the aggrecan C-type lectin domain in regulating endochondral ossification and, thereby, height.


Asunto(s)
Agrecanos/genética , Antígenos/genética , Predisposición Genética a la Enfermedad , Lectinas Tipo C/genética , Mutación Missense , Osteocondrodisplasias/genética , Proteoglicanos/genética , Adolescente , Adulto , Agrecanos/metabolismo , Secuencia de Aminoácidos , Antígenos/metabolismo , Cartílago/metabolismo , Línea Celular , Niño , Femenino , Humanos , Lectinas Tipo C/metabolismo , Masculino , Datos de Secuencia Molecular , Osteocondrodisplasias/metabolismo , Linaje , Unión Proteica , Estructura Terciaria de Proteína , Proteoglicanos/metabolismo , Tenascina/metabolismo , Adulto Joven
7.
Am J Hum Genet ; 84(4): 542-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19361615

RESUMEN

The short-rib polydactyly (SRP) syndromes are a heterogeneous group of perinatal lethal skeletal disorders with polydactyly and multisystem organ abnormalities. Homozygosity by descent mapping in a consanguineous SRP family identified a genomic region that contained DYNC2H1, a cytoplasmic dynein involved in retrograde transport in the cilium. Affected individuals in the family were homozygous for an exon 12 missense mutation that predicted the amino acid substitution R587C. Compound heterozygosity for one missense and one null mutation was identified in two additional nonconsanguineous SRP families. Cultured chondrocytes from affected individuals showed morphologically abnormal, shortened cilia. In addition, the chondrocytes showed abnormal cytoskeletal microtubule architecture, implicating an altered microtubule network as part of the disease process. These findings establish SRP as a cilia disorder and demonstrate that DYNC2H1 is essential for skeletogenesis and growth.


Asunto(s)
Cilios/patología , Dineínas/genética , Mutación , Síndrome de Costilla Pequeña y Polidactilia/genética , Secuencia de Bases , Células Cultivadas , Condrocitos/patología , Codón sin Sentido , Consanguinidad , Dineínas Citoplasmáticas , Cartilla de ADN/genética , Dineínas/fisiología , Femenino , Homocigoto , Humanos , Recién Nacido , Masculino , Mutación Missense , Linaje , Embarazo , Radiografía , Síndrome de Costilla Pequeña y Polidactilia/diagnóstico por imagen , Síndrome de Costilla Pequeña y Polidactilia/embriología
8.
Am J Med Genet A ; 158A(2): 309-14, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22246659

RESUMEN

Fibrochondrogenesis is a severe, recessively inherited skeletal dysplasia shown to result from mutations in the gene encoding the proα1(XI) chain of type XI collagen, COL11A1. The first of two cases reported here was the affected offspring of first cousins and sequence analysis excluded mutations in COL11A1. Consequently, whole-genome SNP genotyping was performed to identify blocks of homozygosity, identical-by-descent, wherein the disease locus would reside. COL11A1 was not within a region of homozygosity, further excluding it as the disease locus, but the gene encoding the proα2(XI) chain of type XI collagen, COL11A2, was located within a large region of homozygosity. Sequence analysis identified homozygosity for a splice donor mutation in intron 18. Exon trapping demonstrated that the mutation resulted in skipping of exon 18 and predicted deletion of 18 amino acids from the triple helical domain of the protein. In the second case, heterozygosity for a de novo 9 bp deletion in exon 40 of COL11A2 was identified, indicating that there are autosomal dominant forms of fibrochondrogenesis. These findings thus demonstrate that fibrochondrogenesis can result from either recessively or dominantly inherited mutations in COL11A2.


Asunto(s)
Colágeno Tipo XI/genética , Enanismo/genética , Enanismo/patología , Osteocondrodisplasias/genética , Osteocondrodisplasias/patología , Sitios de Empalme de ARN/genética , Enanismo/diagnóstico , Exones , Genes Dominantes , Genes Recesivos , Genotipo , Humanos , Recién Nacido , Intrones , Osteocondrodisplasias/diagnóstico , Polimorfismo de Nucleótido Simple , Eliminación de Secuencia
9.
Pediatr Radiol ; 42(1): 15-23, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21863289

RESUMEN

The spondylo and spondylometaphyseal dysplasias (SMDs) are characterized by vertebral changes and metaphyseal abnormalities of the tubular bones, which produce a phenotypic spectrum of disorders from the mild autosomal-dominant brachyolmia to SMD Kozlowski to autosomal-dominant metatropic dysplasia. Investigations have recently drawn on the similar radiographic features of those conditions to define a new family of skeletal dysplasias caused by mutations in the transient receptor potential cation channel vanilloid 4 (TRPV4). This review demonstrates the significance of radiography in the discovery of a new bone dysplasia family due to mutations in a single gene.


Asunto(s)
Análisis Mutacional de ADN , Predisposición Genética a la Enfermedad/genética , Familia de Multigenes/genética , Polimorfismo de Nucleótido Simple/genética , Espondilosis/diagnóstico por imagen , Espondilosis/genética , Canales Catiónicos TRPV/genética , Humanos , Radiografía
10.
Hum Pathol ; 112: 59-69, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33794242

RESUMEN

The NTRK genes include a family of three genes, NTRK1, NTRK2, and NTRK3, which are associated with fusions with a variety of partner genes, leading to upregulation of three proteins, TrkA, TrkB, and TrkC. NTRK fusions occur in a variety of solid tumors: at high incidence in secretory carcinoma of the breast and salivary glands, congenital mesoblastic nephroma, and infantile fibrosarcoma; at intermediate incidence in thyroid carcinoma, particularly postradiation carcinomas and a subset of aggressive papillary carcinomas, Spitzoid melanocytic neoplasms, pediatric midline gliomas (particularly pontine glioma), and KIT/PDGFRA/RAS negative gastrointestinal stromal sarcomas; and at a low incidence in many other solid tumors. With new FDA-approved treatments available and effective in treating patients whose tumors harbor NTRK fusions, testing for these fusions has become important. A variety of technologies can be used for testing, including FISH, PCR, DNA, and RNA-based next-generation sequencing, and immunohistochemistry. RNA-based next-generation sequencing represents the gold standard for the identification of NTRK fusions, but FISH using break-apart probes and DNA-based next-generation sequencing also represent adequate approaches. Immunohistochemistry to detect increased levels of Trk protein may be very useful as a screening technology to reduce costs, although it alone does not represent a definitive diagnostic methodology.


Asunto(s)
Biomarcadores de Tumor/genética , Glicoproteínas de Membrana/genética , Neoplasias/genética , Receptor trkA/genética , Receptor trkB/genética , Receptor trkC/genética , Biomarcadores de Tumor/análisis , Humanos , Fusión de Oncogenes/genética , Receptor trkA/biosíntesis
11.
Gene Expr ; 14(6): 321-36, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20635574

RESUMEN

An accumulation of expressed sequence tag (EST) data in the public domain and the availability of bioinformatic programs have made EST gene expression profiling a common practice. However, the utility and validity of using EST databases (e.g., dbEST) has been criticized, particularly for quantitative assessment of gene expression. Problems with EST sequencing errors, library construction, EST annotation, and multiple paralogs make generation of specific and sensitive qualitative arid quantitative expression profiles a concern. In addition, most EST-derived expression data exists in previously assembled databases. The Virtual Northern Blot (VNB) (http: //tlab.bu.edu/vnb.html) allows generation, evaluation, and optimization of expression profiles in real time, which is especially important for alternatively spliced, novel, or poorly characterized genes. Representative gene families with variable nucleotide sequence identity, tissue specificity, and levels of expression (bcl-xl, aldoA, and cyp2d9) are used to assess the quality of VNB's output. The profiles generated by VNB are more sensitive and specific than those constructed with ESTs listed in preindexed databases at UCSC and NCBI. Moreover, quantitative expression profiles produced by VNB are comparable to quantization obtained from Northern blots and qPCR. The VNB pipeline generates real-time gene expression profiles for single-gene queries that are both qualitatively and quantitatively reliable.


Asunto(s)
Etiquetas de Secuencia Expresada , Perfilación de la Expresión Génica , Genoma Humano , Northern Blotting , Biología Computacional , Cartilla de ADN , Bases de Datos Factuales , Biblioteca de Genes , Marcadores Genéticos/genética , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Sensibilidad y Especificidad
12.
J Immunother Cancer ; 8(1)2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32217756

RESUMEN

BACKGROUND: Tumor mutational burden (TMB), defined as the number of somatic mutations per megabase of interrogated genomic sequence, demonstrates predictive biomarker potential for the identification of patients with cancer most likely to respond to immune checkpoint inhibitors. TMB is optimally calculated by whole exome sequencing (WES), but next-generation sequencing targeted panels provide TMB estimates in a time-effective and cost-effective manner. However, differences in panel size and gene coverage, in addition to the underlying bioinformatics pipelines, are known drivers of variability in TMB estimates across laboratories. By directly comparing panel-based TMB estimates from participating laboratories, this study aims to characterize the theoretical variability of panel-based TMB estimates, and provides guidelines on TMB reporting, analytic validation requirements and reference standard alignment in order to maintain consistency of TMB estimation across platforms. METHODS: Eleven laboratories used WES data from The Cancer Genome Atlas Multi-Center Mutation calling in Multiple Cancers (MC3) samples and calculated TMB from the subset of the exome restricted to the genes covered by their targeted panel using their own bioinformatics pipeline (panel TMB). A reference TMB value was calculated from the entire exome using a uniform bioinformatics pipeline all members agreed on (WES TMB). Linear regression analyses were performed to investigate the relationship between WES and panel TMB for all 32 cancer types combined and separately. Variability in panel TMB values at various WES TMB values was also quantified using 95% prediction limits. RESULTS: Study results demonstrated that variability within and between panel TMB values increases as the WES TMB values increase. For each panel, prediction limits based on linear regression analyses that modeled panel TMB as a function of WES TMB were calculated and found to approximately capture the intended 95% of observed panel TMB values. Certain cancer types, such as uterine, bladder and colon cancers exhibited greater variability in panel TMB values, compared with lung and head and neck cancers. CONCLUSIONS: Increasing uptake of TMB as a predictive biomarker in the clinic creates an urgent need to bring stakeholders together to agree on the harmonization of key aspects of panel-based TMB estimation, such as the standardization of TMB reporting, standardization of analytical validation studies and the alignment of panel-based TMB values with a reference standard. These harmonization efforts should improve consistency and reliability of panel TMB estimates and aid in clinical decision-making.


Asunto(s)
Guías como Asunto/normas , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Carga Tumoral/genética , Simulación por Computador , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Mutación
13.
BMC Genomics ; 10: 646, 2009 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-20043857

RESUMEN

BACKGROUND: The emergence of next-generation sequencing technology presents tremendous opportunities to accelerate the discovery of rare variants or mutations that underlie human genetic disorders. Although the complete sequencing of the affected individuals' genomes would be the most powerful approach to finding such variants, the cost of such efforts make it impractical for routine use in disease gene research. In cases where candidate genes or loci can be defined by linkage, association, or phenotypic studies, the practical sequencing target can be made much smaller than the whole genome, and it becomes critical to have capture methods that can be used to purify the desired portion of the genome for shotgun short-read sequencing without biasing allelic representation or coverage. One major approach is array-based capture which relies on the ability to create a custom in-situ synthesized oligonucleotide microarray for use as a collection of hybridization capture probes. This approach is being used by our group and others routinely and we are continuing to improve its performance. RESULTS: Here, we provide a complete protocol optimized for large aggregate sequence intervals and demonstrate its utility with the capture of all predicted amino acid coding sequence from 3,038 human genes using 241,700 60-mer oligonucleotides. Further, we demonstrate two techniques by which the efficiency of the capture can be increased: by introducing a step to block cross hybridization mediated by common adapter sequences used in sequencing library construction, and by repeating the hybridization capture step. These improvements can boost the targeting efficiency to the point where over 85% of the mapped sequence reads fall within 100 bases of the targeted regions. CONCLUSIONS: The complete protocol introduced in this paper enables researchers to perform practical capture experiments, and includes two novel methods for increasing the targeting efficiency. Coupled with the new massively parallel sequencing technologies, this provides a powerful approach to identifying disease-causing genetic variants that can be localized within the genome by traditional methods.


Asunto(s)
Sitios Genéticos , Genoma Humano , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ADN/métodos , ADN de Neoplasias/genética , Genes Relacionados con las Neoplasias , Biblioteca Genómica , Humanos , Alineación de Secuencia
14.
Mucosal Immunol ; 12(3): 644-655, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30617301

RESUMEN

T helper 9 (TH9) cells are important for the development of inflammatory and allergic diseases. The TH9 transcriptional network converges signals from cytokines and antigen presentation but is incompletely understood. Here, we identified TL1A, a member of the TNF superfamily, as a strong inducer of mouse and human TH9 differentiation. Mechanistically, TL1A induced the expression of the transcription factors BATF and BATF3 and facilitated their binding to the Il9 promoter leading to enhanced secretion of IL-9. BATF- and BATF3-deficiencies impaired IL-9 secretion under TH9 and TH9-TL1A-polarizing conditions. In vivo, using a T-cell transfer model, we demonstrated that TL1A promoted IL-9-dependent, TH9 cell-induced intestinal and lung inflammation. Neutralizing IL-9 antibodies attenuated TL1A-driven mucosal inflammation. Batf3-/- TH9-TL1A cells induced reduced inflammation and cytokine expression in vivo compared to WT cells. Our results demonstrate that TL1A promotes TH9 cell differentiation and function and define a role for BATF3 in T-cell-driven mucosal inflammation.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Inflamación/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Interleucina-9/metabolismo , Proteínas Represoras/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Anticuerpos Neutralizantes/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Diferenciación Celular , Células Cultivadas , Humanos , Interleucina-9/genética , Interleucina-9/inmunología , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Represoras/genética , Transducción de Señal , Miembro 15 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
15.
Oncotarget ; 9(17): 13682-13693, 2018 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-29568386

RESUMEN

BACKGROUND: The role of MET amplification in lung cancer, particularly in relation to checkpoint inhibition and EGFR WT, has not been fully explored. In this study, we correlated PD-L1 expression with MET amplification and EGFR, KRAS, or TP53 mutation in primary lung cancer. METHODS: In this retrospective study, tissue collected from 471 various tumors, including 397 lung cancers, was tested for MET amplification by FISH with a MET/centromere probe. PD-L1 expression was evaluated using clone SP142 and standard immunohistochemistry, and TP53, KRAS, and EGFR mutations were tested using next generation sequencing. RESULTS: Our results revealed that PD-L1 expression in non-small cell lung cancer is inversely correlated with EGFR mutation (P=0.0003), and positively correlated with TP53 mutation (P=0.0001) and MET amplification (P=0.004). Patients with TP53 mutations had significantly higher MET amplification (P=0.007), and were more likely (P=0.0002) to be EGFR wild type. There was no correlation between KRAS mutation and overall PD-L1 expression, but significant positive correlation between PD-L1 expression and KRAS with TP53 co-mutation (P=0.0002). A cut-off for the ratio of MET: centromere signal was determined as 1.5%, and 4% of lung cancer patients were identified as MET amplified. CONCLUSIONS: This data suggests that in lung cancer both MET and TP53 play direct roles in regulating PD-L1 opposing EGFR. Moreover, KRAS and TP53 co-mutation may cooperate to drive PD-L1 expression in lung cancer. Adding MET or TP53 inhibitors to checkpoint inhibitors may be an attractive combination therapy in patients with lung cancer and MET amplification.

16.
BMC Genomics ; 8: 165, 2007 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-17565682

RESUMEN

BACKGROUND: Cartilage plays a fundamental role in the development of the human skeleton. Early in embryogenesis, mesenchymal cells condense and differentiate into chondrocytes to shape the early skeleton. Subsequently, the cartilage anlagen differentiate to form the growth plates, which are responsible for linear bone growth, and the articular chondrocytes, which facilitate joint function. However, despite the multiplicity of roles of cartilage during human fetal life, surprisingly little is known about its transcriptome. To address this, a whole genome microarray expression profile was generated using RNA isolated from 18-22 week human distal femur fetal cartilage and compared with a database of control normal human tissues aggregated at UCLA, termed Celsius. RESULTS: 161 cartilage-selective genes were identified, defined as genes significantly expressed in cartilage with low expression and little variation across a panel of 34 non-cartilage tissues. Among these 161 genes were cartilage-specific genes such as cartilage collagen genes and 25 genes which have been associated with skeletal phenotypes in humans and/or mice. Many of the other cartilage-selective genes do not have established roles in cartilage or are novel, unannotated genes. Quantitative RT-PCR confirmed the unique pattern of gene expression observed by microarray analysis. CONCLUSION: Defining the gene expression pattern for cartilage has identified new genes that may contribute to human skeletogenesis as well as provided further candidate genes for skeletal dysplasias. The data suggest that fetal cartilage is a complex and transcriptionally active tissue and demonstrate that the set of genes selectively expressed in the tissue has been greatly underestimated.


Asunto(s)
Cartílago , Condrocitos/metabolismo , Perfilación de la Expresión Génica , Genes/genética , Genoma Humano , Feto , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Mol Diagn Ther ; 21(5): 571-579, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28639239

RESUMEN

INTRODUCTION: We compared mutations detected in EGFR, KRAS, and BRAF genes using next-generation sequencing (NGS) and confirmed by Sanger sequencing with mutations that could be detected by FDA-cleared testing kits. METHODS: Paraffin-embedded tissue from 822 patients was tested for mutations in EGFR, KRAS, and BRAF by NGS. Sanger sequencing of hot spots was used with locked nucleic acid to increase sensitivity for specific hot-spot mutations. This included 442 (54%) lung cancers, 168 (20%) colorectal cancers, 29 (4%) brain tumors, 33 (4%) melanomas, 14 (2%) thyroid cancers, and 16% others (pancreas, head and neck, and cancer of unknown origin). Results were compared with the approved list of detectable mutations in FDA kits for EGFR, KRAS, and BRAF. RESULTS: Of the 101 patients with EGFR abnormalities as detected by NGS, only 58 (57%) were detectable by cobas v2 and only 35 (35%) by therascreen. Therefore, 42 and 65%, respectively, more mutations were detected by NGS, including two patients with EGFR amplification. Of the 117 patients with BRAF mutation detected by NGS, 62 (53%) mutations were within codon 600, detectable by commercial kits, but 55 (47%) of the mutations were outside codon V600, detected by NGS only. Of the 321 patients with mutations in KRAS detected by NGS, 284 (88.5%) had mutations detectable by therascreen and 300 (93.5%) had mutations detectable by cobas. Therefore, 11.5 and 6.5% additional KRAS mutations were detected by NGS, respectively. CONCLUSION: NGS provides significantly more comprehensive testing for mutations as compared with FDA-cleared kits currently available commercially.


Asunto(s)
Análisis Mutacional de ADN/métodos , Receptores ErbB/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasias/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Femenino , Humanos , Masculino , Adhesión en Parafina , Juego de Reactivos para Diagnóstico , Sensibilidad y Especificidad , Estados Unidos , United States Food and Drug Administration
18.
PLoS One ; 12(9): e0184590, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28880957

RESUMEN

Dysregulation of MST1/STK4, a key kinase component of the Hippo-YAP pathway, is linked to the etiology of many cancers with poor prognosis. However, how STK4 restricts the emergence of aggressive cancer remains elusive. Here, we investigated the effects of STK4, primarily localized in the cytoplasm, lipid raft, and nucleus, on cell growth and gene expression in aggressive prostate cancer. We demonstrated that lipid raft and nuclear STK4 had superior suppressive effects on cell growth in vitro and in vivo compared with cytoplasmic STK4. Using RNA sequencing and bioinformatics analysis, we identified several differentially expressed (DE) genes that responded to ectopic STK4 in all three subcellular compartments. We noted that the number of DE genes observed in lipid raft and nuclear STK4 cells were much greater than cytoplasmic STK4. Our functional annotation clustering showed that these DE genes were commonly associated with oncogenic pathways such as AR, PI3K/AKT, BMP/SMAD, GPCR, WNT, and RAS as well as unique pathways such as JAK/STAT, which emerged only in nuclear STK4 cells. These findings indicate that MST1/STK4/Hippo signaling restricts aggressive tumor cell growth by intersecting with multiple molecular pathways, suggesting that targeting of the STK4/Hippo pathway may have important therapeutic implications for cancer.


Asunto(s)
Neoplasias de la Próstata/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Biología Computacional , Citoplasma/metabolismo , Técnica del Anticuerpo Fluorescente , Vía de Señalización Hippo , Humanos , Péptidos y Proteínas de Señalización Intracelular , Masculino , Ratones , Próstata/metabolismo , Próstata/patología , Transducción de Señal/genética , Transducción de Señal/fisiología
19.
Oncotarget ; 8(16): 26200-26220, 2017 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-28412735

RESUMEN

Glucose is considered the primary energy source for all cells, and some cancers are addicted to glucose. Here, we investigated the functional consequences of chronic glucose deprivation in serous ovarian cancer cells. We found that cells resistant to glucose starvation (glucose-restricted cells) demonstrated increased metabolic plasticity that was dependent on NNMT (Nicotinamide N-methyltransferase) expression. We further show that ZEB1 induced NNMT, rendered cells resistant to glucose deprivation and recapitulated metabolic adaptations and mesenchymal gene expression observed in glucose-restricted cells. NNMT depletion reversed metabolic plasticity in glucose-restricted cells and prevented de novo formation of glucose-restricted colonies. In addition to its role in glucose independence, we found that NNMT was required for other ZEB1-induced phenotypes, such as increased migration. NNMT protein levels were also elevated in metastatic and recurrent tumors compared to matched primary carcinomas, while normal ovary and fallopian tube tissue had no detectable NNMT expression. Our studies define a novel ZEB1/NNMT signaling axis, which elicits mesenchymal gene expression, as well as phenotypic and metabolic plasticity in ovarian cancer cells upon chronic glucose starvation. Understanding the causes of cancer cell plasticity is crucial for the development of therapeutic strategies to counter intratumoral heterogeneity, acquired drug resistance and recurrence in high-grade serous ovarian cancer (HGSC).


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Nicotinamida N-Metiltransferasa/genética , Fenotipo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Adaptación Biológica , Línea Celular Tumoral , Proliferación Celular , Biología Computacional/métodos , Metabolismo Energético , Femenino , Ontología de Genes , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Estimación de Kaplan-Meier , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/mortalidad , Neoplasias/patología , Nicotinamida N-Metiltransferasa/metabolismo , Pronóstico , Transducción de Señal
20.
Sci Rep ; 7(1): 12078, 2017 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-28935958

RESUMEN

The transcriptional regulator Blimp1 plays crucial roles in controlling terminal differentiation in several lineages. In T cells, Blimp1 is expressed in both effector (Teff) and regulatory (Treg) cells, and mice with T cell-specific deletion of Blimp1 (Blimp1CKO mice) spontaneously develop severe intestinal inflammation, indicating a crucial role for Blimp1 in T cell homeostasis regulation. Blimp1 has been shown to function as a direct activator of the Il10 gene and although its requirement for IL10 expression has been demonstrated in both Treg and Teff cells under inflammatory conditions, the intrinsic requirement of Blimp1 for homeostatic maintenance of these T cell subsets had not been investigated. Using mice with Foxp3+ Treg-cell specific deletion of Blimp1 and other approaches, here we show that Foxp3+ Treg cell-intrinsic expression of Blimp1 is required to control Treg and Teff cells homeostasis but, unexpectedly, it is dispensable to prevent development of severe spontaneous intestinal inflammation. In addition, we show that Blimp1 controls common and unique aspects of Treg and Teff cell function by differentially regulating gene expression in these T cell subsets. These findings document previously unappreciated aspects of Blimp1's role in T cell biology and shed light on the intricate mechanisms regulating Treg and Teff cell function.


Asunto(s)
Perfilación de la Expresión Génica , Homeostasis/inmunología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/inmunología , Linfocitos T Reguladores/inmunología , Animales , Citocinas/inmunología , Citocinas/metabolismo , Factores de Transcripción Forkhead/inmunología , Factores de Transcripción Forkhead/metabolismo , Homeostasis/genética , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Factor 1 de Unión al Dominio 1 de Regulación Positiva/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Reguladores/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA