RESUMEN
Genetic maps are fundamental resources for linkage and association studies. A fine-scale genetic map can be constructed by inferring historical recombination events from the genome-wide structure of linkage disequilibrium-a non-random association of alleles among loci-by using population-scale sequencing data. We constructed a fine-scale genetic map and identified recombination hotspots from 10 092 551 bi-allelic high-quality autosomal markers segregating among 150 unrelated Japanese individuals whose genotypes were determined by high-coverage (30×) whole-genome sequencing, and the genotype quality was carefully controlled by using their parents' and offspring's genotypes. The pedigree information was also utilized for haplotype phasing. The resulting genome-wide recombination rate profiles were concordant with those of the worldwide population on a broad scale, and the resolution was much improved. We identified 9487 recombination hotspots and confirmed the enrichment of previously known motifs in the hotspots. Moreover, we demonstrated that the Japanese genetic map improved the haplotype phasing and genotype imputation accuracy for the Japanese population. The construction of a population-specific genetic map will help make genetics research more accurate.
Asunto(s)
Mapeo Cromosómico , Pueblos del Este de Asia , Desequilibrio de Ligamiento , Recombinación Genética , Humanos , Alelos , Pueblos del Este de Asia/genética , Ligamiento Genético , Genética de Población , Genoma Humano , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos , Japón , Linaje , Polimorfismo de Nucleótido Simple , Secuenciación Completa del GenomaRESUMEN
Next-generation sequencing (NGS) has become widely available and is routinely used in basic research and clinical practice. The reference genome sequence is an essential resource for NGS analysis, and several population-specific reference genomes have recently been constructed to provide a choice to deal with the vast genetic diversity of human samples. However, resources supporting population-specific references are insufficient, and it is burdensome to perform analysis using these reference genomes. Here, we constructed a set of resources to support NGS analysis using the Japanese reference genome, JG. We created resources for variant calling, variant-effect prediction, gene and repeat element annotations, read mappability, and RNA-seq analysis. We also provide a resource for reference coordinate conversion for further annotation enrichment. We then provide a variant calling protocol with JG. Our resources provide a guide to prepare sufficient resources for the use of population-specific reference genomes and can facilitate the migration of reference genomes.
RESUMEN
The complete human genome sequence is used as a reference for next-generation sequencing analyses. However, some ethnic ancestries are under-represented in the reference genome (e.g., GRCh37) due to its bias toward European and African ancestries. Here, we perform de novo assembly of three Japanese male genomes using > 100× Pacific Biosciences long reads and Bionano Genomics optical maps per sample. We integrate the genomes using the major allele for consensus and anchor the scaffolds using genetic and radiation hybrid maps to reconstruct each chromosome. The resulting genome sequence, JG1, is contiguous, accurate, and carries the Japanese major allele at most loci. We adopt JG1 as the reference for confirmatory exome re-analyses of seven rare-disease Japanese families and find that re-analysis using JG1 reduces total candidate variant calls versus GRCh37 while retaining disease-causing variants. These results suggest that integrating multiple genomes from a single population can aid genome analyses of that population.