Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2401802121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865264

RESUMEN

The spatial organization of gut microbiota is crucial for the functioning of the gut ecosystem, although the mechanisms that organize gut bacterial communities in microhabitats are only partially understood. The gut of the insect Riptortus pedestris has a characteristic microbiota biogeography with a multispecies community in the anterior midgut and a monospecific bacterial population in the posterior midgut. We show that the posterior midgut region produces massively hundreds of specific antimicrobial peptides (AMPs), the Crypt-specific Cysteine-Rich peptides (CCRs) that have membrane-damaging antimicrobial activity against diverse bacteria but posterior midgut symbionts have elevated resistance. We determined by transposon-sequencing the genetic repertoire in the symbiont Caballeronia insecticola to manage CCR stress, identifying different independent pathways, including AMP-resistance pathways unrelated to known membrane homeostasis functions as well as cell envelope functions. Mutants in the corresponding genes have reduced capacity to colonize the posterior midgut, demonstrating that CCRs create a selective barrier and resistance is crucial in gut symbionts. Moreover, once established in the gut, the bacteria differentiate into a CCR-sensitive state, suggesting a second function of the CCR peptide arsenal in protecting the gut epithelia or mediating metabolic exchanges between the host and the gut symbionts. Our study highlights the evolution of an extreme diverse AMP family that likely contributes to establish and control the gut microbiota.


Asunto(s)
Péptidos Antimicrobianos , Microbioma Gastrointestinal , Simbiosis , Animales , Péptidos Antimicrobianos/metabolismo , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/farmacología , Bacterias/genética , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Tracto Gastrointestinal/microbiología
2.
Proc Natl Acad Sci U S A ; 120(40): e2304879120, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37769258

RESUMEN

Many insects are dependent on microbial mutualists, which are often harbored in specialized symbiotic organs. Upon metamorphosis, insect organs are drastically reorganized. What mechanism regulates the remodeling of the symbiotic organ upon metamorphosis? How does it affect the microbial symbiont therein? Here, we addressed these fundamental issues of symbiosis by experimentally manipulating insect metamorphosis. The stinkbug Plautia stali possesses a midgut symbiotic organ wherein an essential bacterial symbiont resides. By RNAi of master regulator genes for metamorphosis, Kr-h1 over nymphal traits and E93 over adult traits, we generated precocious adults and supernumerary nymphs of P. stali, thereby disentangling the effects of metamorphosis, growth level, developmental stage, and other factors on the symbiotic system. Upon metamorphosis, the symbiotic organ of P. stali was transformed from nymph type to adult type. The supernumerary nymphs and the precocious adults, respectively, developed nymph-type and adult-type symbiotic organs not only morphologically but also transcriptomically, uncovering that metamorphic remodeling of the symbiotic organ is under the control of the MEKRE93 pathway. Transcriptomic, cytological, and biochemical analyses unveiled that the structural and transcriptomic remodeling of the symbiotic organ toward adult emergence underpins its functional extension to food digestion in addition to the original role of symbiont retention for essential nutrient production. Notably, we found that the symbiotic bacteria in the adult-type symbiotic organ up-regulated genes for production of sulfur-containing essential amino acids, methionine and cysteine, that are rich in eggs and sperm, uncovering adult-specific symbiont functioning for host reproduction and highlighting intricate host-symbiont interactions associated with insect metamorphosis.


Asunto(s)
Heterópteros , Simbiosis , Masculino , Animales , Simbiosis/fisiología , Semen , Sistema Digestivo/microbiología , Insectos , Heterópteros/fisiología , Bacterias/genética , Metamorfosis Biológica
3.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35217609

RESUMEN

Insects comprise over half of the described species, and the acquisition of metamorphosis must have contributed to their diversity and prosperity. The order Odonata (dragonflies and damselflies) is among the most-ancestral insects with drastic morphological changes upon metamorphosis, in which understanding of the molecular mechanisms will provide insight into the evolution of incomplete and complete metamorphosis in insects. In order to identify metamorphosis-related genes in Odonata, we performed comprehensive RNA-sequencing of the blue-tailed damselfly Ischnura senegalensis at different developmental stages. Comparative RNA-sequencing analyses between nymphs and adults identified eight nymph-specific and seven adult-specific transcripts. RNA interference (RNAi) of these candidate genes demonstrated that three transcription factors, Krüppel homolog 1 (Kr-h1), broad, and E93 play important roles in metamorphosis of both I. senegalensis and a phylogenetically distant dragonfly, Pseudothemis zonataE93 is essential for adult morphogenesis, and RNAi of Kr-h1 induced precocious metamorphosis in epidermis via up-regulation of E93 Precocious metamorphosis was also induced by RNAi of the juvenile hormone receptor Methoprene-tolerant (Met), confirming that the regulation of metamorphosis by the MEKRE93 (Met-Kr-h1-E93) pathway is conserved across diverse insects including the basal insect lineage Odonata. Notably, RNAi of broad produced unique grayish pigmentation on the nymphal abdominal epidermis. Survey of downstream genes for Kr-h1, broad, and E93 uncovered that unlike other insects, broad regulates a substantial number of nymph-specific and adult-specific genes independently of Kr-h1 and E93 These findings highlight the importance of functional changes and rewiring of the transcription factors Kr-h1, broad, and E93 in the evolution of insect metamorphosis.


Asunto(s)
Evolución Biológica , Metamorfosis Biológica/genética , Odonata/crecimiento & desarrollo , Alas de Animales , Animales , Femenino , Perfilación de la Expresión Génica , Genes de Insecto , Masculino , Odonata/genética , Interferencia de ARN
4.
Biol Lett ; 17(6): 20200761, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34102071

RESUMEN

Odonata species display a remarkable diversity of colour patterns, including intrasexual polymorphisms. In the damselfly (Ischnura senegalensis), the expression of a sex-determining transcription factor, the doublesex (Isdsx) gene is reportedly associated with female colour polymorphism (CP) (gynomorph for female-specific colour and andromorph for male-mimicking colour). Here, the function of Isdsx in thoracic coloration was investigated by electroporation-mediated RNA interference (RNAi). RNAi of the Isdsx common region in males and andromorphic females reduced melanization and thus changed the colour pattern into that of gynomorphic females, while the gynomorphic colour pattern was not affected. By contrast, RNAi against the Isdsx long isoform produced no changes, suggesting that the Isdsx short isoform is important for body colour masculinization in both males and andromorphic females. When examining the expression levels of five genes with differences between sexes and female morphs, two melanin-suppressing genes, black and ebony, were expressed at higher levels in the Isdsx RNAi body area than a control area. Therefore, the Isdsx short isoform may induce thoracic colour differentiation by suppressing black and ebony, thereby generating female CP in I. senegalensis. These findings contribute to the understanding of the molecular and evolutionary mechanisms underlying female CP in Odonata.


Asunto(s)
Proteínas de Insectos/genética , Odonata , Pigmentación/genética , Animales , Evolución Biológica , Femenino , Masculino
5.
Proc Natl Acad Sci U S A ; 114(40): E8382-E8391, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923972

RESUMEN

Beetles, representing the majority of the insect species diversity, are characterized by thick and hard cuticle, which plays important roles for their environmental adaptation and underpins their inordinate diversity and prosperity. Here, we report a bacterial endosymbiont extremely specialized for sustaining beetle's cuticle formation. Many weevils are associated with a γ-proteobacterial endosymbiont lineage Nardonella, whose evolutionary origin is estimated as older than 100 million years, but its functional aspect has been elusive. Sequencing of Nardonella genomes from diverse weevils unveiled drastic size reduction to 0.2 Mb, in which minimal complete gene sets for bacterial replication, transcription, and translation were present but almost all of the other metabolic pathway genes were missing. Notably, the only metabolic pathway retained in the Nardonella genomes was the tyrosine synthesis pathway, identifying tyrosine provisioning as Nardonella's sole biological role. Weevils are armored with hard cuticle, tyrosine is the principal precursor for cuticle formation, and experimental suppression of Nardonella resulted in emergence of reddish and soft weevils with low tyrosine titer, confirming the importance of Nardonella-mediated tyrosine production for host's cuticle formation and hardening. Notably, Nardonella's tyrosine synthesis pathway was incomplete, lacking the final step transaminase gene. RNA sequencing identified host's aminotransferase genes up-regulated in the bacteriome. RNA interference targeting the aminotransferase genes induced reddish and soft weevils with low tyrosine titer, verifying host's final step regulation of the tyrosine synthesis pathway. Our finding highlights an impressively intimate and focused aspect of the host-symbiont metabolic integrity via streamlined evolution for a single biological function of ecological relevance.


Asunto(s)
Bacterias/patogenicidad , Genoma Bacteriano , Integumento Común/fisiología , Simbiosis , Transaminasas/metabolismo , Tirosina/metabolismo , Gorgojos/genética , Animales , Fenómenos Fisiológicos Bacterianos , Evolución Molecular , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Gorgojos/microbiología
6.
Proc Biol Sci ; 286(1897): 20182207, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30963836

RESUMEN

In insects, antimicrobial humoral immunity is governed by two distinct gene cascades, IMD pathway mainly targeting Gram-negative bacteria and Toll pathway preferentially targeting Gram-positive bacteria, which are widely conserved among diverse metazoans. However, recent genomic studies uncovered that IMD pathway is exceptionally absent in some hemipteran lineages like aphids and assassin bugs. How the apparently incomplete immune pathways have evolved with functionality is of interest. Here we report the discovery that, in the hemipteran stinkbug Plautia stali, both IMD and Toll pathways are present but their functional differentiation is blurred. Injection of Gram-negative bacteria and Gram-positive bacteria upregulated effector genes of both pathways. Notably, RNAi experiments unveiled significant functional permeation and crosstalk between IMD and Toll pathways: RNAi of IMD pathway genes suppressed upregulation of effector molecules of both pathways, where the suppression was more remarkable for IMD effectors; and RNAi of Toll pathway genes reduced upregulation of effector molecules of both pathways, where the suppression was more conspicuous for Toll effectors. These results suggest the possibility that, in hemipterans and other arthropods, IMD and Toll pathways are intertwined to target wider and overlapping arrays of microbes, which might have predisposed and facilitated the evolution of incomplete immune pathways.


Asunto(s)
Hemípteros/inmunología , Inmunidad Humoral/genética , Transducción de Señal/inmunología , Factores de Transcripción/inmunología , Animales , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología , Hemípteros/genética , Transducción de Señal/genética , Factores de Transcripción/genética , Regulación hacia Arriba
7.
Proc Natl Acad Sci U S A ; 112(11): E1247-56, 2015 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-25713365

RESUMEN

Dragonflies are colorful and large-eyed animals strongly dependent on color vision. Here we report an extraordinary large number of opsin genes in dragonflies and their characteristic spatiotemporal expression patterns. Exhaustive transcriptomic and genomic surveys of three dragonflies of the family Libellulidae consistently identified 20 opsin genes, consisting of 4 nonvisual opsin genes and 16 visual opsin genes of 1 UV, 5 short-wavelength (SW), and 10 long-wavelength (LW) type. Comprehensive transcriptomic survey of the other dragonflies representing an additional 10 families also identified as many as 15-33 opsin genes. Molecular phylogenetic analysis revealed dynamic multiplications and losses of the opsin genes in the course of evolution. In contrast to many SW and LW genes expressed in adults, only one SW gene and several LW genes were expressed in larvae, reflecting less visual dependence and LW-skewed light conditions for their lifestyle under water. In this context, notably, the sand-burrowing or pit-dwelling species tended to lack SW gene expression in larvae. In adult visual organs: (i) many SW genes and a few LW genes were expressed in the dorsal region of compound eyes, presumably for processing SW-skewed light from the sky; (ii) a few SW genes and many LW genes were expressed in the ventral region of compound eyes, probably for perceiving terrestrial objects; and (iii) expression of a specific LW gene was associated with ocelli. Our findings suggest that the stage- and region-specific expressions of the diverse opsin genes underlie the behavior, ecology, and adaptation of dragonflies.


Asunto(s)
Variación Genética , Odonata/genética , Opsinas/genética , Visión Ocular/genética , Animales , Secuencia Conservada/genética , Evolución Molecular , Ojo/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Larva/anatomía & histología , Luz , Datos de Secuencia Molecular , Odonata/anatomía & histología , Especificidad de Órganos/genética , Filogenia
8.
Zoolog Sci ; 34(5): 386-397, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28990479

RESUMEN

In an attempt to establish an experimental dragonfly model, we developed a laboratory rearing system for the blue-tailed damselfly, Ischnura senegalensis. Adoption of multi-well plastic plates as rearing containers enabled mass-rearing of isolated larvae without cannibalism and convenient microscopic monitoring of individual larvae. Feeding Artemia brine shrimps to younger larvae and Tubifex worms for older larvae resulted in low mortality, synchronized ecdysis, and normal development of the larvae. We continuously monitored the development of 118 larvae every day, of which 49 individuals (41.5%) reached adulthood. The adult insects were fed with Drosophila flies in wet plastic cages, attained reproductive maturity in a week, copulated, laid fertilized eggs, and produced progeny. The final larval instar varied from 9th to 12th, with the 11th instar (56.5%) and the 12th instar (24.2%) constituting the majority. From the 1st instar to the penultimate instar, the duration of each instar was relatively short, mainly ranging from three to 11 days. Afterwards, the duration of each instar was prolonged, reaching 7-25 days for the penultimate instar and 14-28 days for the final instar. Some larvae of final, penultimate and younger instars were subjected to continuous and close morphological examinations, which enabled developmental staging of larvae based on size, shape, and angle of compound eyes and other morphological traits. This laboratory rearing system may facilitate the understanding of physiological, biochemical, and molecular mechanisms underlying metamorphosis, hormonal control, morphogenesis, body color polymorphism, and other biological features of dragonflies.


Asunto(s)
Crianza de Animales Domésticos/métodos , Odonata/crecimiento & desarrollo , Animales , Larva/crecimiento & desarrollo , Metamorfosis Biológica , Morfogénesis , Odonata/fisiología
9.
Front Zool ; 13: 46, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27766110

RESUMEN

Odonata (dragonflies and damselflies) present an unparalleled insect model to integrate evolutionary genomics with ecology for the study of insect evolution. Key features of Odonata include their ancient phylogenetic position, extensive phenotypic and ecological diversity, several unique evolutionary innovations, ease of study in the wild and usefulness as bioindicators for freshwater ecosystems worldwide. In this review, we synthesize studies on the evolution, ecology and physiology of odonates, highlighting those areas where the integration of ecology with genomics would yield significant insights into the evolutionary processes that would not be gained easily by working on other animal groups. We argue that the unique features of this group combined with their complex life cycle, flight behaviour, diversity in ecological niches and their sensitivity to anthropogenic change make odonates a promising and fruitful taxon for genomics focused research. Future areas of research that deserve increased attention are also briefly outlined.

10.
Proc Natl Acad Sci U S A ; 109(31): 12626-31, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22778425

RESUMEN

Body color change associated with sexual maturation--so-called nuptial coloration--is commonly found in diverse vertebrates and invertebrates, and plays important roles for their reproductive success. In some dragonflies, whereas females and young males are yellowish in color, aged males turn vivid red upon sexual maturation. The male-specific coloration plays pivotal roles in, for example, mating and territoriality, but molecular basis of the sex-related transition in body coloration of the dragonflies has been poorly understood. Here we demonstrate that yellow/red color changes in the dragonflies are regulated by redox states of epidermal ommochrome pigments. Ratios of reduced-form pigments to oxidized-form pigments were significantly higher in red mature males than yellow females and immature males. The ommochrome pigments extracted from the dragonflies changed color according to redox conditions in vitro: from red to yellow in the presence of oxidant and from yellow to red in the presence of reductant. By injecting the reductant solution into live insects, the yellow-to-red color change was experimentally reproduced in vivo in immature males and mature females. Discontinuous yellow/red mosaicism was observed in body coloration of gynandromorphic dragonflies, suggesting a cell-autonomous regulation over the redox states of the ommochrome pigments. Our finding extends the mechanical repertoire of pigment-based body color change in animals, and highlights an impressively simple molecular mechanism that regulates an ecologically important color trait.


Asunto(s)
Insectos/fisiología , Pigmentación/fisiología , Sitios de Carácter Cuantitativo/fisiología , Caracteres Sexuales , Animales , Femenino , Masculino
11.
Proc Natl Acad Sci U S A ; 107(29): 12980-5, 2010 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-20615980

RESUMEN

Pigmentation patterning has long interested biologists, integrating topics in ecology, development, genetics, and physiology. Wild-type neonatal larvae of the silkworm, Bombyx mori, are completely black. By contrast, the epidermis and head of larvae of the homozygous recessive sex-linked chocolate (sch) mutant are reddish brown. When incubated at 30 degrees C, mutants with the sch allele fail to hatch; moreover, homozygous mutants carrying the allele sch lethal (sch(l)) do not hatch even at room temperature (25 degrees C). By positional cloning, we narrowed a region containing sch to 239,622 bp on chromosome 1 using 4,501 backcross (BC1) individuals. Based on expression analyses, the best sch candidate gene was shown to be tyrosine hydroxylase (BmTh). BmTh coding sequences were identical among sch, sch(l), and wild-type. However, in sch the approximately 70-kb sequence was replaced with approximately 4.6 kb of a Tc1-mariner type transposon located approximately 6 kb upstream of BmTh, and in sch(l), a large fragment of an L1Bm retrotransposon was inserted just in front of the transcription start site of BmTh. In both cases, we observed a drastic reduction of BmTh expression. Use of RNAi with BmTh prevented pigmentation and hatching, and feeding of a tyrosine hydroxylase inhibitor also suppressed larval pigmentation in the wild-type strain, pnd(+) and in a pS (black-striped) heterozygote. Feeding L-dopa to sch neonate larvae rescued the mutant phenotype from chocolate to black. Our results indicate the BmTh gene is responsible for the sch mutation, which plays an important role in melanin synthesis producing neonatal larval color.


Asunto(s)
Bombyx/enzimología , Bombyx/genética , Genes de Insecto/genética , Mutación/genética , Pigmentación/genética , Caracteres Sexuales , Tirosina 3-Monooxigenasa/metabolismo , Animales , Mapeo Cromosómico , Ligamiento Genético , Genoma/genética , Larva , Fenotipo , Reproducibilidad de los Resultados
12.
BMC Biol ; 10: 46, 2012 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-22651552

RESUMEN

BACKGROUND: Body coloration is an ecologically important trait that is often involved in prey-predator interactions through mimicry and crypsis. Although this subject has attracted the interest of biologists and the general public, our scientific knowledge on the subject remains fragmentary. In the caterpillar of the swallowtail butterfly Papilio xuthus, spectacular changes in the color pattern are observed; the insect mimics bird droppings (mimetic pattern) as a young larva, and switches to a green camouflage coloration (cryptic pattern) in the final instar. Despite the wide variety and significance of larval color patterns, few studies have been conducted at a molecular level compared with the number of studies on adult butterfly wing patterns. RESULTS: To obtain a catalog of genes involved in larval mimetic and cryptic pattern formation, we constructed expressed sequence tag (EST) libraries of larval epidermis for P. xuthus, and P. polytes that contained 20,736 and 5,376 clones, respectively, representing one of the largest collections available in butterflies. A comparison with silkworm epidermal EST information revealed the high expression of putative blue and yellow pigment-binding proteins in Papilio species. We also designed a microarray from the EST dataset information, analyzed more than five stages each for six markings, and confirmed spatial expression patterns by whole-mount in situ hybridization. Hence, we succeeded in elucidating many novel marking-specific genes for mimetic and cryptic pattern formation, including pigment-binding protein genes, the melanin-associated gene yellow-h3, the ecdysteroid synthesis enzyme gene 3-dehydroecdysone 3b-reductase, and Papilio-specific genes. We also found many cuticular protein genes with marking specificity that may be associated with the unique surface nanostructure of the markings. Furthermore, we identified two transcription factors, spalt and ecdysteroid signal-related E75, as genes expressed in larval eyespot markings. This finding suggests that E75 is a strong candidate mediator of the hormone-dependent coordination of larval pattern formation. CONCLUSIONS: This study is one of the most comprehensive molecular analyses of complicated morphological features, and it will serve as a new resource for studying insect mimetic and cryptic pattern formation in general. The wide variety of marking-associated genes (both regulatory and structural genes) identified by our screening indicates that a similar strategy will be effective for understanding other complex traits.


Asunto(s)
Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/genética , Regulación del Desarrollo de la Expresión Génica , Proteínas de Insectos/genética , Pigmentos Biológicos/genética , 3-Hidroxiesteroide Deshidrogenasas/genética , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Animales , Mariposas Diurnas/crecimiento & desarrollo , Mariposas Diurnas/metabolismo , Ecdisteroides/genética , Ecdisteroides/metabolismo , Etiquetas de Secuencia Expresada , Genes de Insecto , Proteínas de Insectos/metabolismo , Larva/enzimología , Larva/genética , Larva/crecimiento & desarrollo , Larva/metabolismo , Melaninas/genética , Melaninas/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Pigmentación , Pigmentos Biológicos/metabolismo
13.
Cell Rep ; 42(8): 112917, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37537843

RESUMEN

A previously undescribed mechanism underlying butterfly wing coloration patterns was discovered in two distantly related butterfly species, Siproeta stelenes and Philaethria diatonica. These butterflies have bright green wings, but the color pattern is not derived from solid pigments or nanostructures of the scales or from the color of the cuticular membrane but rather from a liquid retained in the wing membrane. Wing structure differs between the green and non-green areas. In the non-green region, the upper and lower cuticular membranes are attached to each other, whereas in the green region, we observed a space of 5-10 µm where green liquid is held and living cells are present. A pigment analysis and tracer experiment revealed that the color of the liquid is derived from hemolymph components, bilin and carotenoid pigments. This discovery broadens our understanding of the diverse ways in which butterfly wings obtain their coloration and patterns.


Asunto(s)
Mariposas Diurnas , Nanoestructuras , Animales , Pigmentación , Alas de Animales , Membranas
14.
Sci Rep ; 12(1): 16503, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36192417

RESUMEN

Antimicrobial peptides (AMPs) play crucial roles in the innate immunity of diverse organisms, which exhibit remarkable diversity in size, structural property and antimicrobial spectrum. Here, we describe a new AMP, named Pentatomicin, from the stinkbug Plautia stali (Hemiptera: Pentatomidae). Orthologous nucleotide sequences of Pentatomicin were present in stinkbugs and beetles but not in other insect groups. Notably, orthologous sequences were also detected from a horseshoe crab, cyanobacteria and proteobacteria, suggesting the possibility of inter-domain horizontal gene transfers of Pentatomicin and allied protein genes. The recombinant protein of Pentatomicin was effective against an array of Gram-positive bacteria but not against Gram-negative bacteria. Upon septic shock, the expression of Pentatomicin drastically increased in a manner similar to other AMPs. On the other hand, unlike other AMPs, mock and saline injections increased the expression of Pentatomicin. RNAi-mediated downregulation of Imd pathway genes (Imd and Relish) and Toll pathway genes (MyD88 and Dorsal) revealed that the expression of Pentatomicin is under the control of Toll pathway. Being consistent with in vitro effectiveness of the recombinant protein, adult insects injected with dsRNA of Pentatomicin exhibited higher vulnerability to Gram-positive Staphylococcus aureus than to Gram-negative Escherichia coli. We discovered high levels of Pentatomicin expression in eggs, which is atypical of other AMPs and suggestive of its biological functioning in eggs. Contrary to the expectation, however, RNAi-mediated downregulation of Pentatomicin did not affect normal embryonic development of P. stali. Moreover, the downregulation of Pentatomicin in eggs did not affect vertical symbiont transmission to the offspring even under heavily contaminated conditions, which refuted our expectation that the antimicrobial activity of Pentatomicin may contribute to egg surface-mediated symbiont transmission by suppressing microbial contaminants.


Asunto(s)
Péptidos Antimicrobianos , Heterópteros , Animales , Heterópteros/fisiología , Factor 88 de Diferenciación Mieloide , Proteínas Recombinantes
15.
Curr Opin Genet Dev ; 69: 14-20, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33482606

RESUMEN

The order Odonata (dragonflies and damselflies) comprises diurnal insects with well-developed vision, showing diverse colors in adult wings and bodies. It is one of the most ancestral winged insect groups. Because Odonata species use visual cues to recognize each other, color patterns have been investigated from ecological and evolutionary viewpoints. Here we review the recent progress on molecular mechanisms of pigmentation, especially focused on light-blue coloration. Results from histology and pigment analysis showed that ommochrome pigments on the proximal layer and pteridine pigments on the distal layer of the epidermis are essential for light-blue coloration. We also summarize genes involved in the biosynthesis of three major insect pigments conserved across insects and discuss that gene-functional analysis deserves future studies.


Asunto(s)
Odonata/genética , Pigmentación/genética , Alas de Animales/anatomía & histología , Animales , Color , Odonata/anatomía & histología , Fenotiazinas/química , Fenotipo
16.
Sci Rep ; 11(1): 5164, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664373

RESUMEN

The order Odonata (dragonflies and damselflies) is among the most ancestral groups of winged insects with drastic morphological changes upon metamorphosis, and thus important for understanding evo-devo aspects of insects. However, basic developmental descriptions of Odonata have been scarce. In an attempt to establish the foundation of developmental and experimental biology of Odonata, we present an unprecedentedly comprehensive survey of dragonflies and damselflies, in total 158 larvae representing 49 species and 14 families, wherein morphological changes of all the final and/or penultimate instar larvae were photographed and monitored everyday. Although their morphology and development were diverse, we consistently identified two visually recognizable morphogenetic events in the final larval instar, namely start of wing expansion and onset of melanization on the wing sheaths, thereby categorizing the final instar into three stages. While the duration of the first stage ranged 4-66 days across diverse Odonata species, the second or third stages exhibited relatively small variation ranging 3-22 days or 1-8 days, respectively, probably reflecting the steady and irreversible metamorphosis process after stage 2. We also described other characteristic morphological changes during the larval development, although they were observed only in some Odonata species and lineages.


Asunto(s)
Larva/genética , Metamorfosis Biológica/genética , Odonata/crecimiento & desarrollo , Animales , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Morfogénesis/genética , Odonata/anatomía & histología , Odonata/genética , Alas de Animales/crecimiento & desarrollo
17.
J Vis Exp ; (168)2021 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-33616106

RESUMEN

Dragonflies and damselflies (order Odonata) represent one of the most ancestral insects with metamorphosis, in which they change their habitat, morphology, and behavior drastically from aquatic larvae to terrestrial/aerial adults without pupal stage. Odonata adults have a well-developed color vision and show a remarkable diversity in body colors and patterns across sexes, stages, and species. While many ecological and behavioral studies on Odonata have been conducted, molecular genetic studies have been scarce mainly due to the difficulty in applying gene functional analysis to Odonata. For instance, RNA interference (RNAi) is less effective in the Odonata, as reported in the Lepidoptera. To overcome this problem, we successfully established an RNAi method combined with in vivo electroporation. Here we provide a detailed protocol including a video of the electroporation-mediated RNAi method as follows: preparation of larvae, species identification, preparation of dsRNA/siRNA solution and injection needles, ice-cold anesthesia of larvae, dsRNA/siRNA injection, in vivo electroporation, and individual rearing until adult emergence. The electroporation-mediated RNAi method is applicable to both damselflies (suborder Zygoptera) and dragonflies (suborder Anisoptera). In this protocol, we present the methods for the blue-tailed damselfly Ischnura senegalensis (Coenagrionidae) as an example of damselfly species and the pied skimmer dragonfly Pseudothemis zonata (Libellulidae) as another example of dragonfly species. As representative examples, we show the results of RNAi targeting the melanin synthesis gene multicopper oxidase 2. This RNAi method will facilitate understanding of various gene functions involved in metamorphosis, morphogenesis, color pattern formation, and other biological features of Odonata. Moreover, this protocol may be generally applicable to non-model organisms in which RNAi is less effective in gene suppression due to the inefficiency and low penetrance.


Asunto(s)
Electroporación/métodos , Odonata/genética , Interferencia de ARN , Animales , Inyecciones , Larva/genética , Fenotipo , Pigmentación , Polimorfismo de Longitud del Fragmento de Restricción , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo
18.
Zootaxa ; 5027(1): 1-35, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34811247

RESUMEN

Twelve Planaeschna McLachlan, 1895 species recorded in Vietnam are presented and their subgroupings based on nuclear DNA analysis are discussed. Three new species are described (Planaeschna crux sp. nov. [holotype: Pia Oac NP, Cao Bang Prov.], Planaeschna samurai sp. nov. [holotype: Khau Pha, Tu Le, Yen Bai Prov.] and Planaeschna tsuchi sp. nov. [holotype: Xuan Son NP, Phu Tho Prov.]. Planaeschna celia Wilson Reels, 2001 is recorded from Vietnam for the first time. Planaeschna guentherpetersi Sasamoto, Do Vu, 2013 is shown to be a subspecies of Planaeschna ishigakiana Asahina, 1951. The female of Planaeschna cucphuongensis Karube, 1999 is described for the first time. Additional records are provided for Planaeschna asahinai Karube, 2011, Planaeschna tamdaoensis Asahina, 1996, Planaeschna tomokunii Asahina, 1996, and Planaeschna viridis Karube, 2004. Lastly, the females of two unidentified Planaeschna spp. are illustrated. Information on the ecology of all species is provided.


Asunto(s)
Odonata , Animales , Femenino , Vietnam
19.
PLoS One ; 16(1): e0245081, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33444324

RESUMEN

Development of a reliable method for RNA interference (RNAi) by orally-delivered double-stranded RNA (dsRNA) is potentially promising for crop protection. Considering that RNAi efficiency considerably varies among different insect species, it is important to seek for the practical conditions under which dsRNA-mediated RNAi effectively works against each pest insect. Here we investigated RNAi efficiency in the brown-winged green stinkbug Plautia stali, which is notorious for infesting various fruits and crop plants. Microinjection of dsRNA into P. stali revealed high RNAi efficiency-injection of only 30 ng dsRNA into last-instar nymphs was sufficient to knockdown target genes as manifested by their phenotypes, and injection of 300 ng dsRNA suppressed the gene expression levels by 80% to 99.9%. Knockdown experiments by dsRNA injection showed that multicopper oxidase 2 (MCO2), vacuolar ATPase (vATPase), inhibitor of apoptosis (IAP), and vacuolar-sorting protein Snf7 are essential for survival of P. stali, as has been demonstrated in other insects. By contrast, P. stali exhibited very low RNAi efficiency when dsRNA was orally administered. When 1000 ng/µL of dsRNA solution was orally provided to first-instar nymphs, no obvious phenotypes were observed. Consistent with this, RT-qPCR showed that the gene expression levels were not affected. A higher concentration of dsRNA (5000 ng/µL) induced mortality in some cohorts, and the gene expression levels were reduced to nearly 50%. Simultaneous oral administration of dsRNA against potential RNAi blocker genes did not improve the RNAi efficiency of the target genes. In conclusion, P. stali shows high sensitivity to RNAi with injected dsRNA but, unlike the allied pest stinkbugs Halyomorpha halys and Nezara viridula, very low sensitivity to RNAi with orally-delivered dsRNA, which highlights the varied sensitivity to RNAi across different species and limits the applicability of the molecular tool for controlling this specific insect pest.


Asunto(s)
Heterópteros , Control de Insectos , Proteínas de Insectos , Interferencia de ARN , ARN Bicatenario , Animales , Heterópteros/genética , Heterópteros/metabolismo , Proteínas de Insectos/sangre , Proteínas de Insectos/genética , Ninfa/genética , Ninfa/metabolismo , ARN Bicatenario/genética , ARN Bicatenario/farmacología
20.
BMC Ecol Evol ; 21(1): 181, 2021 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-34563127

RESUMEN

BACKGROUND: Evolutionary processes can cause strong spatial genetic signatures, such as local loss of genetic diversity, or conflicting histories from mitochondrial versus nuclear markers. Investigating these genetic patterns is important, as they may reveal obscured processes and players. The maternally inherited bacterium Wolbachia is among the most widespread symbionts in insects. Wolbachia typically spreads within host species by conferring direct fitness benefits, and/or by manipulating its host reproduction to favour infected over uninfected females. Under sufficient selective advantage, the mitochondrial haplotype associated with the favoured maternally-inherited symbiotic strains will spread (i.e. hitchhike), resulting in low mitochondrial genetic variation across the host species range. METHOD: The common bluetail damselfly (Ischnura elegans: van der Linden, 1820) has recently emerged as a model organism for genetics and genomic signatures of range expansion during climate change. Although there is accumulating data on the consequences of such expansion on the genetics of I. elegans, no study has screened for Wolbachia in the damselfly genus Ischnura. Here, we present the biogeographic variation in Wolbachia prevalence and penetrance across Europe and Japan (including samples from 17 populations), and from close relatives in the Mediterranean area (i.e. I. genei: Rambur, 1842; and I. saharensis: Aguesse, 1958). RESULTS: Our data reveal (a) multiple Wolbachia-strains, (b) potential transfer of the symbiont through hybridization, (c) higher infection rates at higher latitudes, and (d) reduced mitochondrial diversity in the north-west populations, indicative of hitchhiking associated with the selective sweep of the most common strain. We found low mitochondrial haplotype diversity in the Wolbachia-infected north-western European populations (Sweden, Scotland, the Netherlands, Belgium, France and Italy) of I. elegans, and, conversely, higher mitochondrial diversity in populations with low penetrance of Wolbachia (Ukraine, Greece, Montenegro and Cyprus). The timing of the selective sweep associated with infected lineages was estimated between 20,000 and 44,000 years before present, which is consistent with the end of the last glacial period about 20,000 years. CONCLUSIONS: Our findings provide an example of how endosymbiont infections can shape spatial variation in their host evolutionary genetics during postglacial expansion. These results also challenge population genetic studies that do not consider the prevalence of symbionts in many insects, which we show can impact geographic patterns of mitochondrial genetic diversity.


Asunto(s)
ADN Mitocondrial , Odonata/genética , Odonata/microbiología , Wolbachia , Animales , Chipre , ADN Mitocondrial/genética , Femenino , Variación Genética , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA