Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nano Lett ; 23(20): 9451-9460, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37842945

RESUMEN

Dry eye disease (DED) is a chronic condition characterized by ocular dryness and inflammation. The tear film lipid layer (TFLL) is the outermost layer composed of lipids and proteins that protect the ocular surface. However, environmental contaminants can disrupt its structure, potentially leading to DED. Although the importance of tear proteins in the TFLL functionality has been clinically recognized, the molecular mechanisms underlying TFLL-protein interactions remain unclear. In this study, we investigated tear protein-lipid interactions and analyzed their role in the TFLL functionality. The results show that lysozyme (LYZ) increases the stability of the TFLL by reducing its surface tension and increasing its surface pressure, resulting in increased TFLL evaporation and bacterial invasion resistance, with improved wettability and lubrication performance. These findings highlight the critical role of LYZ in maintaining ocular health and provide potential avenues for investigating novel approaches to DED treatment and patient well-being.


Asunto(s)
Síndromes de Ojo Seco , Lípidos , Humanos , Lípidos/química , Muramidasa , Síndromes de Ojo Seco/tratamiento farmacológico , Síndromes de Ojo Seco/metabolismo , Fenómenos Físicos , Lágrimas/química , Lágrimas/metabolismo
2.
J Environ Manage ; 270: 110909, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32721343

RESUMEN

This review summarizes the recent development and studies of anaerobic membrane bioreactor (AnMBR) to control fouling issues. AnMBR is an emerging waste water treatment technology mainly because of its low sludge residual, high volumetric organic removal rate, complete liquid-solid separation, better effluent quality, efficient resource recovery and the small footprint. This paper surveys the fundamental aspects of AnMBRs, including its applications, membrane configurations, and recent progress for enhanced reactor performance. Furthermore, the membrane fouling, a major restriction in the practical application of AnMBR, its mechanism and antifouling strategies like membrane cleaning, quorum quenching, ultrasonic treatment, membrane modifications, and antifouling agents are briefly discussed. Based on the review, the key issues that require urgent attention to facilitate large scale and integrated application of AnMBR technology are identified and future research perspectives relating to the prevalent issues are proposed.


Asunto(s)
Reactores Biológicos , Purificación del Agua , Anaerobiosis , Membranas Artificiales , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales
3.
Int J Mol Sci ; 20(6)2019 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-30901910

RESUMEN

In biological cells, membrane proteins are the most crucial component for the maintenance of cell physiology and processes, including ion transportation, cell signaling, cell adhesion, and recognition of signal molecules. Therefore, researchers have proposed a number of membrane platforms to mimic the biological cell environment for transmembrane protein incorporation. The performance and selectivity of these transmembrane proteins based biomimetic platforms are far superior to those of traditional material platforms, but their lack of stability and scalability rule out their commercial presence. This review highlights the development of transmembrane protein-based biomimetic platforms for four major applications, which are biosensors, molecular interaction studies, energy harvesting, and water purification. We summarize the fundamental principles and recent progress in transmembrane protein biomimetic platforms for each application, discuss their limitations, and present future outlooks for industrial implementation.


Asunto(s)
Materiales Biomiméticos , Biomimética , Membrana Celular/química , Proteínas de la Membrana/química , Membranas Artificiales , Animales , Técnicas Biosensibles , Membrana Celular/metabolismo , Descubrimiento de Drogas/métodos , Humanos , Proteínas de la Membrana/metabolismo , Conformación Molecular , Nanotecnología
4.
Biomimetics (Basel) ; 9(5)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38786499

RESUMEN

Placental trophoblast invasion is critical for establishing the maternal-fetal interface, yet the mechanisms driving trophoblast-induced maternal arterial remodeling remain elusive. To address this gap, we developed a three-dimensional microfluidic placenta-on-chip model that mimics early pregnancy placentation in a hypoxic environment. By studying human umbilical vein endothelial cells (HUVECs) under oxygen-deprived conditions upon trophoblast invasion, we observed significant HUVEC artery remodeling, suggesting the critical role of hypoxia in placentation. In particular, we found that trophoblasts secrete matrix metalloproteinase (MMP) proteins under hypoxic conditions, which contribute to arterial remodeling by the degradation of extracellular matrix components. This MMP-mediated remodeling is critical for facilitating trophoblast invasion and proper establishment of the maternal-fetal interface. In addition, our platform allows real-time monitoring of HUVEC vessel contraction during trophoblast interaction, providing valuable insights into the dynamic interplay between trophoblasts and maternal vasculature. Collectively, our findings highlight the importance of MMP-mediated arterial remodeling in placental development and underscore the potential of our platform to study pregnancy-related complications and evaluate therapeutic interventions.

5.
Biomimetics (Basel) ; 9(7)2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-39056836

RESUMEN

The surface topography of substrates is a crucial factor that determines the interaction with biological materials in bioengineering research. Therefore, it is important to appropriately modify the surface topography according to the research purpose. Surface topography can be fabricated in various forms, such as wrinkles, creases, and ridges using surface deformation techniques, which can contribute to the performance enhancement of cell chips, organ chips, and biosensors. This review provides a comprehensive overview of the characteristics of soft, hard, and hybrid substrates used in the bioengineering field and the surface deformation techniques applied to the substrates. Furthermore, this review summarizes the cases of cell-based research and other applications, such as biosensor research, that utilize surface deformation techniques. In cell-based research, various studies have reported optimized cell behavior and differentiation through surface deformation, while, in the biosensor and biofilm fields, performance improvement cases due to surface deformation have been reported. Through these studies, we confirm the contribution of surface deformation techniques to the advancement of the bioengineering field. In the future, it is expected that the application of surface deformation techniques to the real-time interaction analysis between biological materials and dynamically deformable substrates will increase the utilization and importance of these techniques in various fields, including cell research and biosensors.

6.
Antioxidants (Basel) ; 13(9)2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39334794

RESUMEN

Reactive oxygen species (ROS) are chemically reactive oxygen-containing compounds generated by various factors in the body. Antioxidants mitigate the damaging effects of ROS by playing a critical role in regulating redox balance and signaling. In this study, the interplay between reactive oxygen species (ROS) and antioxidants in the context of lipid dynamics were investigated. The interaction between hydrogen peroxide (H2O2) as an ROS and vitamin E (α-tocopherol) as an antioxidant was examined. Model membranes containing both saturated and unsaturated lipids served as experimental platforms to investigate the influence of H2O2 on phospholipid unsaturation and the role of antioxidants in this process. The results demonstrated that H2O2 has a negative effect on membrane stability and disrupts the lipid membrane structure, whereas the presence of antioxidants protects the lipid membrane from the detrimental effects of ROS. The model membranes used here are a useful tool for understanding ROS-antioxidant interactions at the molecular level in vitro.

7.
Adv Colloid Interface Sci ; 306: 102718, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35714572

RESUMEN

This review discusses the classification, characteristics, and applications of biosurfactants. The biosynthesis pathways for different classes of biosurfactants are reviewed. An in-depth analysis of reported research is carried out emphasizing the synthetic pathways, culture media compositions, and influencing factors on production yield of biosurfactants. The environmental, pharmaceutical, industrial, and other applications of biosurfactants are discussed in detail. A special attention is given to the biosurfactants application in combating the pandemic COVID-19. It is found that biosurfactant production from waste materials can play a significant role in enhancing circular bioeconomy and environmental sustainability. This review also details the life cycle assessment methodologies for the production and applications of biosurfactants. Finally, the current status and limitations of biosurfactant research are discussed and the potential areas are highlighted for future research and development. This review will be helpful in selecting the best available technology for biosynthesis and application of particular biosurfactant under specific conditions.


Asunto(s)
COVID-19 , Tensoactivos , Humanos , Tensoactivos/metabolismo
8.
Colloids Surf B Biointerfaces ; 199: 111552, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33421926

RESUMEN

A freestanding lipid bilayer or black lipid membrane is a powerful tool for studying ion channels and for biophysical studies of other membrane proteins under controlled chemical and physical conditions. Even though the lipid bilayer has been considered an excellent sensing platform to detect diverse single molecules from nucleotides to cells, it is not yet widely used, mainly due to its low stability and the expertise needed for membrane formation. To ameliorate the issues of conventional membrane formation techniques, we report a novel layered film that consists of a nonporous layer sandwiched between two porous layers to facilitate bilayer formation. Moreover, the absorption of excess solvent present in the membrane precursor solution can be achieved by the film, enabling control over the membrane formation process. Through this layered design, we could obtain an ideal film that has a reduced and controlled membrane formation time (<30 min) and a sufficient bilayer lifetime (3 h) for ion channel studies and biosensing.


Asunto(s)
Técnicas Biosensibles , Membrana Dobles de Lípidos , Canales Iónicos , Nanotecnología , Porosidad
9.
Membranes (Basel) ; 11(8)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34436342

RESUMEN

Local anesthesia is a drug that penetrates the nerve cell membrane and binds to the voltage gate sodium channel, inhibiting the membrane potential and neurotransmission. It is mainly used in clinical uses to address the pain of surgical procedures in the local area. Local anesthetics (LAs), however, can be incorporated into the membrane, reducing the thermal stability of the membrane as well as altering membrane properties such as fluidity, permeability, and lipid packing order. The effects of LAs on the membrane are not yet fully understood, despite a number of previous studies. In particular, it is necessary to analyze which is the more dominant factor, the membrane affinity or the structural perturbation of the membrane. To analyze the effects of LAs on the cell membrane and compare the results with those from model membranes, morphological analysis and 50% inhibitory concentration (IC50) measurement of CCD-1064sk (fibroblast, human skin) membranes were carried out for lidocaine (LDC) and tetracaine (TTC), the most popular LAs in clinical use. Furthermore, the membrane affinity of the LAs was quantitatively analyzed using a colorimetric polydiacetylene assay, where the color shift represents their distribution in the membrane. Further, to confirm the membrane affinity and structural effects of the membranes, we performed an electrophysiological study using a model protein (gramicidin A, gA) and measured the channel lifetime of the model protein on the free-standing lipid bilayer according to the concentration of each LA. Our results show that when LAs interact with cell membranes, membrane affinity is a more dominant factor than steric or conformational effects of the membrane.

10.
Org Lett ; 21(19): 7828-7832, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31478380

RESUMEN

Cl--ion transporters (2a-2h) were synthesized based on the binding motifs of prodigiosin. Transporter 2e clearly displays Cl--ion transportation activity across both model and live cell membranes. Furthermore, 2e can disrupt Ca2+ homeostasis and increase the intracellular concentration of Ca2+ in the DLD-1 cell. This disruption can lead to Caspase-dependent apoptosis supported by CHOP expression (a marker of ER stress) and the appearance of the cleaved forms of Caspase 3 and PARP.


Asunto(s)
Transportadores de Anión Orgánico/farmacología , Prodigiosina/farmacología , Calcio/análisis , Calcio/metabolismo , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Estructura Molecular , Transportadores de Anión Orgánico/síntesis química , Transportadores de Anión Orgánico/química , Prodigiosina/síntesis química , Prodigiosina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA