Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 277
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(37): e2403256121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39186667

RESUMEN

This study reports the earliest directly dated occurrence of archaeological wheat and cotton in the humid forests of West Africa. These are the first archaeobotanical results from the medieval urban center of Ile-Ife, southwestern Nigeria, best known for its famous artworks. Both wheat and cotton likely spread through trans-Saharan trade networks that laid the foundation for later European trade systems. Forty-eight (48) grains of free-threshing wheat (Triticum aestivum/durum) represent the largest assemblage of wheat recovered in sub-Saharan West Africa, which is surprising given that wheat cannot be cultivated locally. Larger quantities of cotton (Gossypium sp.) recovered from late 12th- to early 13th-century CE contexts suggest earlier and more widespread use than wheat. Cotton may have been cultivated and manufactured into cloth locally. The quick adoption of these exotic crops illustrates the active negotiation of prestige through culinary and adornment practices, as well as a high degree of agricultural experimentation.


Asunto(s)
Arqueología , Gossypium , Triticum , Nigeria , Historia Medieval , Agricultura/historia , Productos Agrícolas/historia , Humanos
2.
Genes Dev ; 33(15-16): 936-959, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31123059

RESUMEN

Changes in chromatin structure mediated by ATP-dependent nucleosome remodelers and histone modifying enzymes are integral to the process of gene regulation. Here, we review the roles of the SWI/SNF (switch/sucrose nonfermenting) and NuRD (nucleosome remodeling and deacetylase) and the Polycomb system in chromatin regulation and cancer. First, we discuss the basic molecular mechanism of nucleosome remodeling, and how this controls gene transcription. Next, we provide an overview of the functional organization and biochemical activities of SWI/SNF, NuRD, and Polycomb complexes. We describe how, in metazoans, the balance of these activities is central to the proper regulation of gene expression and cellular identity during development. Whereas SWI/SNF counteracts Polycomb, NuRD facilitates Polycomb repression on chromatin. Finally, we discuss how disruptions of this regulatory equilibrium contribute to oncogenesis, and how new insights into the biological functions of remodelers and Polycombs are opening avenues for therapeutic interventions on a broad range of cancer types.


Asunto(s)
Ensamble y Desensamble de Cromatina/genética , Proteínas Cromosómicas no Histona/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Neoplasias/fisiopatología , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/metabolismo , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos
3.
Genes Dev ; 29(21): 2231-43, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26494712

RESUMEN

Polycomb-like proteins 1-3 (PCL1-3) are substoichiometric components of the Polycomb-repressive complex 2 (PRC2) that are essential for association of the complex with chromatin. However, it remains unclear why three proteins with such apparent functional redundancy exist in mammals. Here we characterize their divergent roles in both positively and negatively regulating cellular proliferation. We show that while PCL2 and PCL3 are E2F-regulated genes expressed in proliferating cells, PCL1 is a p53 target gene predominantly expressed in quiescent cells. Ectopic expression of any PCL protein recruits PRC2 to repress the INK4A gene; however, only PCL2 and PCL3 confer an INK4A-dependent proliferative advantage. Remarkably, PCL1 has evolved a PRC2- and chromatin-independent function to negatively regulate proliferation. We show that PCL1 binds to and stabilizes p53 to induce cellular quiescence. Moreover, depletion of PCL1 phenocopies the defects in maintaining cellular quiescence associated with p53 loss. This newly evolved function is achieved by the binding of the PCL1 N-terminal PHD domain to the C-terminal domain of p53 through two unique serine residues, which were acquired during recent vertebrate evolution. This study illustrates the functional bifurcation of PCL proteins, which act in both a chromatin-dependent and a chromatin-independent manner to regulate the INK4A and p53 pathways.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas del Grupo Polycomb/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Proliferación Celular/genética , Células Cultivadas , Cromatina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Proteínas de Unión al ADN/genética , Factores de Transcripción E2F/metabolismo , Humanos , Ratones , Proteínas del Grupo Polycomb/genética , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína/genética
4.
Anal Chem ; 94(31): 11008-11015, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35912577

RESUMEN

Chip-scale infrared spectrometers consisting of a microring resonator array (MRA) were developed for volatile organic compound (VOC) detection. The MRA is serially positioned to serve as a wavelength sorting element that enables wavelength demultiplexing. Unlike conventional devices operated by a single microring, our MRA can perform multiwavelength mid-infrared (mid-IR) sensing by routing the resonant wavelength light from a broadband mid-IR source into different sensing channels. Miniaturized spectrometer devices were fabricated on mid-IR transparent silicon-rich silicon nitride (SiNx) thin films through complementary metal-oxide-semiconductor (CMOS) processes, thus enabling wafer-level manufacturing and packaging. The spectral distribution of the resonance lines and the optimization of the microring structures were designed using finite-difference time-domain (FDTD) modeling and then verified by laser spectrum scanning. Using small microring structures, the spectrum showed a large free spectral range (FSR) of 100 nm and held four spectral channels without crosstalk. Unlike near-infrared microrings using refractive index sensing, our MRA can detect hexane and ethanol vapor pulses by monitoring the intensity variation at their characteristic mid-IR absorption bands, thus providing high specificity. Applying multiwavelength detection, the sensor module can discriminate among various VOC vapors. Hence, our mid-IR MRA could be an essential component to achieve a compact spectroscopic sensing module that has the potential for applications such as remote environmental monitoring and portable health care devices.


Asunto(s)
Compuestos Orgánicos Volátiles , Gases , Luz , Refractometría/métodos
5.
J Environ Manage ; 302(Pt A): 113960, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34700076

RESUMEN

The rapid specialization of livestock production in China has contributed to spatially decoupled crop and livestock production, leading to various environmental pollution issues. Some regional agro-environmental policies have recently promoted the coupling of specialized crop and livestock farms through cooperation. However, the environmental and economic performances of such cooperation remain unclear. This study investigated multiple environmental footprints of two contrasting production systems: cooperative crop-livestock systems (CCLS) and decoupled specialized livestock systems (DSLS), using survey data of 87 ruminant farms in Northwest China. Results show that farms in CCLS had lower net greenhouse gas (GHG) emissions (12-29%), lower reactive nitrogen (Nr) emissions (21-40%), lower phosphorus footprints (PF) (41-54%), and used less cropland (24-31%) per kg animal product, compared to those in DSLS. The large differences in GHG emissions between the two systems were mainly related to enteric fermentation and resource production (used for feed production). The differences in Nr emissions and PF were mainly related to manure management. Net profits per kg animal product were higher in CCLS (13-35%) than in DSLS, and most profits originated from lower purchasing costs of feed and young livestock. Net profits and environmental footprints were negatively correlated, suggesting an environmental and economic win-win situation for CCLS. The possible obstacles to recoupling specialized crop and livestock farms through cooperation have been discussed, including farm size, contract stability, and local policies. Our study provides science-based evidence to support policymakers and specialized farms to close nutrient loops between crop and livestock production sectors through regional cooperation.


Asunto(s)
Gases de Efecto Invernadero , Ganado , Animales , Granjas , Estiércol , Nitrógeno
6.
Anal Chem ; 93(10): 4497-4505, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33660983

RESUMEN

A microfluidic paper-based analytical device (µPAD) is a cost-effective platform to implement assays, especially for point-of-care testing. Developing µPADs with fluidic control is important to implement multistep assays and provide high sensitivities. However, current localized delays in µPADs made of sucrose have a limited ability to decrease the flow rate. In addition, existing µPADs for automatic multistep assays are limited by their need for auxiliary instruments, their false activation, or their unavoidable tradeoff between available fluid volumes and temporal differences between steps. Here, a novel µPAD composed of a localized dissolvable delay and a horizontal motion mechanical valve for use as an automatic multistep assay is reported. A mixture of fructose and sucrose was used in the localized dissolvable delay and it provided an effective decrease in the flow rate to ensure adequate sensitivity in an assay. The dissolvable delay effectively doubled the flow time. A mechanical valve using a horizontal movement was developed to automatically implement a multistep process. Two-step and four-step processes were enabled with the µPAD. Cardiac troponin I (cTnI), a gold-standard biomarker for myocardial infarction, was used as a model analyte to show the performance of the developed µPAD in an assay. The designed µPAD, with the simple-to-make localized dissolvable delay and the robust mechanical valve, provides the potential to automatically implement high-performance multistep assays toward a versatile platform for point-of-care diagnostics.

7.
Br J Surg ; 108(7): 834-842, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-33661306

RESUMEN

BACKGROUND: The extent of liver resection for tumours is limited by the expected functional reserve of the future liver remnant (FRL), so hypertrophy may be induced by portal vein embolization (PVE), taking 6 weeks or longer for growth. This study assessed the hypothesis that simultaneous embolization of portal and hepatic veins (PVE/HVE) accelerates hypertrophy and improves resectability. METHODS: All centres of the international DRAGON trials study collaborative were asked to provide data on patients who had PVE/HVE or PVE on 2016-2019 (more than 5 PVE/HVE procedures was a requirement). Liver volumetry was performed using OsiriX MD software. Multivariable analysis was performed for the endpoints of resectability rate, FLR hypertrophy and major complications using receiver operating characteristic (ROC) statistics, regression, and Kaplan-Meier analysis. RESULTS: In total, 39 patients had undergone PVE/HVE and 160 had PVE alone. The PVE/HVE group had better hypertrophy than the PVE group (59 versus 48 per cent respectively; P = 0.020) and resectability (90 versus 68 per cent; P = 0.007). Major complications (26 versus 34 per cent; P = 0.550) and 90-day mortality (3 versus 16 per cent respectively, P = 0.065) were comparable. Multivariable analysis confirmed that these effects were independent of confounders. CONCLUSION: PVE/HVE achieved better FLR hypertrophy and resectability than PVE in this collaborative experience.


Asunto(s)
Embolización Terapéutica/métodos , Hepatectomía/métodos , Neoplasias Hepáticas/terapia , Cuidados Preoperatorios/métodos , Anciano , Femenino , Estudios de Seguimiento , Venas Hepáticas , Humanos , Regeneración Hepática , Masculino , Persona de Mediana Edad , Vena Porta , Estudios Retrospectivos , Resultado del Tratamiento
8.
Europace ; 23(6): 887-897, 2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-33582797

RESUMEN

AIMS: This study was performed to develop and externally validate prediction models for appropriate implantable cardioverter-defibrillator (ICD) shock and mortality to identify subgroups with insufficient benefit from ICD implantation. METHODS AND RESULTS: We recruited patients scheduled for primary prevention ICD implantation and reduced left ventricular function. Bootstrapping-based Cox proportional hazards and Fine and Gray competing risk models with likely candidate predictors were developed for all-cause mortality and appropriate ICD shock, respectively. Between 2014 and 2018, we included 1441 consecutive patients in the development and 1450 patients in the validation cohort. During a median follow-up of 2.4 (IQR 2.1-2.8) years, 109 (7.6%) patients received appropriate ICD shock and 193 (13.4%) died in the development cohort. During a median follow-up of 2.7 (IQR 2.0-3.4) years, 105 (7.2%) received appropriate ICD shock and 223 (15.4%) died in the validation cohort. Selected predictors of appropriate ICD shock were gender, NSVT, ACE/ARB use, atrial fibrillation history, Aldosterone-antagonist use, Digoxin use, eGFR, (N)OAC use, and peripheral vascular disease. Selected predictors of all-cause mortality were age, diuretic use, sodium, NT-pro-BNP, and ACE/ARB use. C-statistic was 0.61 and 0.60 at respectively internal and external validation for appropriate ICD shock and 0.74 at both internal and external validation for mortality. CONCLUSION: Although this cohort study was specifically designed to develop prediction models, risk stratification still remains challenging and no large group with insufficient benefit of ICD implantation was found. However, the prediction models have some clinical utility as we present several scenarios where ICD implantation might be postponed.


Asunto(s)
Desfibriladores Implantables , Antagonistas de Receptores de Angiotensina , Inhibidores de la Enzima Convertidora de Angiotensina , Estudios de Cohortes , Muerte Súbita Cardíaca/prevención & control , Humanos , Prevención Primaria , Factores de Riesgo
9.
Anal Chem ; 92(13): 8917-8922, 2020 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-32460484

RESUMEN

Raman spectroscopy using aluminum nitride (AlN) optical waveguides was demonstrated for organic compound analysis. The AlN waveguide device was prepared by reactive sputtering deposition and complementary-metal-oxide semiconductor (CMOS) processes. A fundamental waveguide mode was observed over a broad visible spectrum and the waveguide evanescent wave was used to excite the Raman signals of the test analytes. The performance of the waveguide sensor was characterized by measuring the Raman spectra of the benzene derivative mixtures consisting of benzene, anisole, and toluene. The compositions and concentrations were resolved by correlating the obtained Raman spectrum with the characteristic Raman peaks associated with C-C, C-H, and C-O functional groups. With the advantages of real-time detection and enhanced Raman signal intensity, the AlN waveguides provided a sensor platform for nondestructive and online chemical compound monitoring.

10.
Glob Chang Biol ; 26(2): 888-900, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31495039

RESUMEN

Recycling of livestock manure to agricultural land may reduce the use of synthetic fertilizer and thereby enhance the sustainability of food production. However, the effects of substitution of fertilizer by manure on crop yield, nitrogen use efficiency (NUE), and emissions of ammonia (NH3 ), nitrous oxide (N2 O) and methane (CH4 ) as function of soil and manure properties, experimental duration and application strategies have not been quantified systematically and convincingly yet. Here, we present a meta-analysis of these effects using results of 143 published studies in China. Results indicate that the partial substitution of synthetic fertilizers by manure significantly increased the yield by 6.6% and 3.3% for upland crop and paddy rice, respectively, but full substitution significantly decreased yields (by 9.6% and 4.1%). The response of crop yields to manure substitution varied with soil pH and experimental durations, with relatively large positive responses in acidic soils and long-term experiments. NUE increased significantly at a moderate ratio (<40%) of substitution. NH3 emissions were significantly lower with full substitution (62%-77%), but not with partial substitution. Emissions of CH4 from paddy rice significantly increased with substitution ratio (SR), and varied by application rates and manure types, but N2 O emissions decreased. The SR did not significantly influence N2 O emissions from upland soils, and a relative scarcity of data on certain manure characteristic was found to hamper identification of the mechanisms. We derived overall mean N2 O emission factors (EF) of 0.56% and 0.17%, as well as NH3 EFs of 11.1% and 6.5% for the manure N applied to upland and paddy soils, respectively. Our study shows that partial substitution of fertilizer by manure can increase crop yields, and decrease emissions of NH3 and N2 O, but depending on site-specific conditions. Manure addition to paddy rice soils is recommended only if abatement strategies for CH4 emissions are also implemented.


Asunto(s)
Fertilizantes , Oryza , Agricultura , Animales , China , Producción de Cultivos , Estiércol , Nitrógeno , Óxido Nitroso , Suelo
11.
Analyst ; 145(3): 983-991, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-31829323

RESUMEN

The development of viable point-of-care diagnostic formats is integral to achieving better patient care and improved outcomes. The need for robust and low-cost tests is especially important in under-resourced and rural settings. Perhaps the greatest challenge is ensuring that an untrained individual is capable of operating and interpreting the test, out with a care facility. Here we present a paper-based diagnostic device capable of sensing miR-29a using both colorimetric and surface enhanced Raman scattering (SERS) analysis. Rather, than carry out the two types of analyses in tandem, we envisage that the colorimetric output is easy enough to be interpreted by the untrained-individual administering the test to provide them with qualitative feedback. If deemed positive, the test can be further validated at a centralized care facility using a handheld-Raman spectrometer to provide a semi-quantitative result. Detection of miR-29a, a microRNA associated with myocardial infarction, was achieved at a level of pg µL-1 through the combination of three-dimensional paper-based microfluidics, colorimetric detection, and surface enhanced Raman scattering (SERS) analysis. RGB analysis of the colorimetric output generated from samples containing miR-29a at different concentrations (18-360 pg µL-1) showed differentiation from the control sample, however significant repeat variability indicated that it could not be used for quantifying miR-29a levels. However, the SERS analysis exhibited greater reproducibility at varying concentrations, achieving an LoD of 47 pg µL-1. The union of the paper-based device and the two analysis methods resulted in the production of a sensitive, reproducible and facile, point of care test (POCT), which paves the way for future implementation in the diagnosis of a range of diseases.


Asunto(s)
MicroARNs/análisis , Microfluídica/métodos , Papel , Oro/química , Humanos , Límite de Detección , Nanopartículas del Metal/química , MicroARNs/química , Microfluídica/instrumentación , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/genética , Pruebas en el Punto de Atención , Colorantes de Rosanilina/química , Espectrometría Raman
12.
J Environ Manage ; 264: 110454, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32250891

RESUMEN

Manure acidification is recommended to minimize ammonia (NH3) emission at storage. However, the potential for acidification to mitigate NH3 emission from storage and the impact of manure acidification (pH range 5-8) on composting have been poorly studied. The effects of manure acidification at storage on the subsequent composting process, nutrient balance, gaseous emissions and product quality were assessed through an analysis of literature data and an experiment under controlled conditions. Results of the data mining showed that mineral acids, acidic salts and organic acids significantly reduced NH3 emission, however, a weaker effect was observed for organic acids. A subsequent composting experiment showed that using manure acidified to pH5 or pH6 as feedstock delayed organic matter degradation for 7-10 days, although pH6 had no negative effect on compost maturity. Acidification significantly decreased NH3 emission from both storage and composting, however, excessive acidification (pH5) enhanced N2O emissions (18.6%) during composting. When manure was acidified to pH6, N2O (17.6%) and CH4 (20%) emissions, and total GHG emissions expressed as global warming potential (GWP) (9.6%) were reduced during composting. Acidification of manure before composting conserved more N as NH4+ and NOx- in compost product. Compared to the control, the labile, plant-available phosphorus (P) content in the compost product, predominately as water-soluble inorganic P, increased with manure acidification to pH5 and pH6. Acidification of manure to pH6 before composting decreases nutrient losses and gaseous emissions without decreasing the quality of the compost product. The techno-economic advantages of acidification should be further ascertained.


Asunto(s)
Compostaje , Amoníaco , Gases , Concentración de Iones de Hidrógeno , Estiércol , Metano , Nitrógeno , Nutrientes , Suelo
13.
Environ Sci Technol ; 53(3): 1385-1393, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30609901

RESUMEN

Developing sustainable food systems is essential, especially for emerging economies, where food systems are changing rapidly and affect the environment and natural resources. We explored possible future pathways for a sustainable food system in China, using multiple environmental indicators linked to eight of the Sustainable Development Goals (SDGs). Forecasts for 2030 in a business as usual scenario (BAU) indicate increases in animal food consumption as well as increased shortages of the land available and the water needed to produce the required food in China. Associated greenhouse gas emissions and nitrogen and phosphorus losses could become 10-42% of global emissions in 2010. We developed three main pathways besides BAU [produce more and better food (PMB), consume and waste less food (CWL), and import more food (IMF)] and analyzed their impacts and contributions to achieving one or more of the eight SDGs. Under these scenarios, the demand for land and water and the emissions of GHG and nutrients may decrease by 7-55% compared to BAU, depending on the pathway followed. A combination of PMB and CWL was most effective, while IMF externalizes impacts to countries exporting to China. Modestly increasing feed or food imports in a selective manner could ease the pressure on natural resources. Our modeling framework allows us to analyze the effects of changes in food production-consumption systems in an integrated manner, and the results can be linked to the eight SDGs. Despite formidable technological, social, educational, and structural barriers that need to be overcome, our study indicates that the ambitious targets of China's new agricultural and environmental strategy appear to be achievable.


Asunto(s)
Agricultura , Gases de Efecto Invernadero , Animales , China , Nitrógeno , Fósforo
14.
J Mater Sci Mater Med ; 30(7): 79, 2019 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-31240399

RESUMEN

Long-term, subcutaneously implanted continuous glucose biosensors have the potential to improve diabetes management and reduce associated complications. However, the innate foreign body reaction (FBR) both alters the local glucose concentrations in the surrounding tissues and compromises glucose diffusion to the biosensor due to the recruitment of high-metabolizing inflammatory cells and the formation of a dense, collagenous fibrous capsule. Minimizing the FBR has mainly focused on "passively antifouling" materials that reduce initial cellular attachment, including poly(ethylene glycol) (PEG). Instead, the membrane reported herein utilizes an "actively antifouling" or "self-cleaning" mechanism to inhibit cellular attachment through continuous, cyclic deswelling/reswelling in response to normal temperature fluctuations of the subcutaneous tissue. This thermoresponsive double network (DN) membrane is based on N-isopropylacrylamide (NIPAAm) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) (75:25 and 100:0 NIPAAm:AMPS in the 1st and 2nd networks, respectively; "DN-25%"). The extent of the FBR reaction of a subcutaneously implanted DN-25% cylindrical membrane was evaluated in rodents in parallel with a PEG-diacrylate (PEG-DA) hydrogel as an established benchmark biocompatible control. Notably, the DN-25% implants were more than 25× stronger and tougher than the PEG-DA implants while maintaining a modulus near that of subcutaneous tissue. From examining the FBR at 7, 30 and 90 days after implantation, the thermoresponsive DN-25% implants demonstrated a rapid healing response and a minimal fibrous capsule (~20-25 µm), similar to the PEG-DA implants. Thus, the dynamic self-cleaning mechanism of the DN-25% membranes represents a new approach to limit the FBR while achieving the durability necessary for long-term implantable glucose biosensors.


Asunto(s)
Técnicas Biosensibles , Automonitorización de la Glucosa Sanguínea , Glucemia/análisis , Reacción a Cuerpo Extraño/prevención & control , Membranas Artificiales , Acrilamidas/química , Alcanosulfonatos/química , Animales , Materiales Biocompatibles , Colágeno/química , Hidrogeles , Inflamación , Masculino , Ensayo de Materiales , Polietilenglicoles/química , Ratas , Estrés Mecánico , Cicatrización de Heridas
15.
Glob Chang Biol ; 24(5): 2198-2211, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29417720

RESUMEN

China has an ever-increasing thirst for milk, with a predicted 3.2-fold increase in demand by 2050 compared to the production level in 2010. What are the environmental implications of meeting this demand, and what is the preferred pathway? We addressed these questions by using a nexus approach, to examine the interdependencies of increasing milk consumption in China by 2050 and its global impacts, under different scenarios of domestic milk production and importation. Meeting China's milk demand in a business as usual scenario will increase global dairy-related (China and the leading milk exporting regions) greenhouse gas (GHG) emissions by 35% (from 565 to 764 Tg CO2eq ) and land use for dairy feed production by 32% (from 84 to 111 million ha) compared to 2010, while reactive nitrogen losses from the dairy sector will increase by 48% (from 3.6 to 5.4 Tg nitrogen). Producing all additional milk in China with current technology will greatly increase animal feed import; from 1.9 to 8.5 Tg for concentrates and from 1.0 to 6.2 Tg for forage (alfalfa). In addition, it will increase domestic dairy related GHG emissions by 2.2 times compared to 2010 levels. Importing the extra milk will transfer the environmental burden from China to milk exporting countries; current dairy exporting countries may be unable to produce all additional milk due to physical limitations or environmental preferences/legislation. For example, the farmland area for cattle-feed production in New Zealand would have to increase by more than 57% (1.3 million ha) and that in Europe by more than 39% (15 million ha), while GHG emissions and nitrogen losses would increase roughly proportionally with the increase of farmland in both regions. We propose that a more sustainable dairy future will rely on high milk demanding regions (such as China) improving their domestic milk and feed production efficiencies up to the level of leading milk producing countries. This will decrease the global dairy related GHG emissions and land use by 12% (90 Tg CO2eq reduction) and 30% (34 million ha land reduction) compared to the business as usual scenario, respectively. However, this still represents an increase in total GHG emissions of 19% whereas land use will decrease by 8% when compared with 2010 levels, respectively.


Asunto(s)
Industria Lechera , Efecto Invernadero , Leche/provisión & distribución , Alimentación Animal , Animales , Bovinos , China , Europa (Continente) , Nueva Zelanda , Nitrógeno
16.
Mol Cell Proteomics ; 15(11): 3450-3460, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27634302

RESUMEN

Polycomb proteins assemble to form complexes with important roles in epigenetic regulation. The Polycomb Repressive Complex 2 (PRC2) modulates the di- and tri-methylation of lysine 27 on histone H3, each of which are associated with gene repression. Although three subunits, EZH1/2, SUZ12, and EED, form the catalytic core of PRC2, a wider group of proteins associate with low stoichiometry. This raises the question of whether dynamic variation of the PRC2 interactome results in alternative forms of the complex during differentiation. Here we compared the physical interactions of PRC2 in undifferentiated and differentiated states of NTERA2 pluripotent embryonic carcinoma cells. Label-free quantitative proteomics was used to assess endogenous immunoprecipitation of the EZH2 and SUZ12 subunits of PRC2. A high stringency data set reflecting the endogenous state of PRC2 was produced that included all previously reported core and associated PRC2 components, and several novel interacting proteins. Comparison of the interactomes obtained in undifferentiated and differentiated cells revealed candidate proteins that were enriched in complexes isolated from one of the two states. For example, SALL4 and ZNF281 associate with PRC2 in pluripotent cells, whereas PCL1 and SMAD3 preferentially associate with PRC2 in differentiating cells. Analysis of the mRNA and protein levels of these factors revealed that their association with PRC2 correlated with their cell state-specific expression. Taken together, we propose that dynamic changes to the PRC2 interactome during differentiation may contribute to directing its activity during cell fate transitions.


Asunto(s)
Células Madre de Carcinoma Embrionario/citología , Células Madre Pluripotentes/citología , Complejo Represivo Polycomb 2/metabolismo , Proteómica/métodos , Diferenciación Celular , Línea Celular Tumoral , Células Madre de Carcinoma Embrionario/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Epigénesis Genética , Histonas/metabolismo , Humanos , Proteínas de Neoplasias , Células Madre Pluripotentes/metabolismo , Mapas de Interacción de Proteínas , Factores de Transcripción
17.
J Biol Chem ; 291(36): 18632-42, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27432882

RESUMEN

Parathyroid hormone (PTH) and FGF23 are the primary hormones regulating acute phosphate homeostasis. Human renal proximal tubule cells (RPTECs) were used to characterize the mechanism and signaling pathways of PTH and FGF23 on phosphate transport and the role of the PDZ protein NHERF1 in mediating PTH and FGF23 effects. RPTECs express the NPT2A phosphate transporter, αKlotho, FGFR1, FGFR3, FGFR4, and the PTH receptor. FGFR1 isoforms are formed from alternate splicing of exon 3 and of exon 8 or 9 in Ir-like loop 3. Exon 3 was absent, but mRNA containing both exons 8 and 9 is present in cytoplasm. Using an FGFR1c-specific antibody together with mass spectrometry analysis, we show that RPTECs express FGFR-ß1C. The data are consistent with regulated FGFR1 splicing involving a novel cytoplasmic mechanism. PTH and FGF23 inhibited phosphate transport in a concentration-dependent manner. At maximally effective concentrations, PTH and FGF23 equivalently decreased phosphate uptake and were not additive, suggesting a shared mechanism of action. Protein kinase A or C blockade prevented PTH but not FGF23 actions. Conversely, inhibiting SGK1, blocking FGFR dimerization, or knocking down Klotho expression disrupted FGF23 actions but did not interfere with PTH effects. C-terminal FGF23(180-251) competitively and selectively blocked FGF23 action without disrupting PTH effects. However, both PTH and FGF23-sensitive phosphate transport were abolished by NHERF1 shRNA knockdown. Extended treatment with PTH or FGF23 down-regulated NPT2A without affecting NHERF1. We conclude that FGFR1c and PTHR signaling pathways converge on NHERF1 to inhibit PTH- and FGF23-sensitive phosphate transport and down-regulate NPT2A.


Asunto(s)
Factores de Crecimiento de Fibroblastos/metabolismo , Hormona Paratiroidea/metabolismo , Fosfatos/metabolismo , Transducción de Señal/fisiología , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/metabolismo , Línea Celular Transformada , Factor-23 de Crecimiento de Fibroblastos , Factores de Crecimiento de Fibroblastos/genética , Glucuronidasa/biosíntesis , Glucuronidasa/genética , Humanos , Proteínas Klotho , Hormona Paratiroidea/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/biosíntesis , Receptor Tipo 4 de Factor de Crecimiento de Fibroblastos/genética , Receptor de Hormona Paratiroídea Tipo 1/genética , Receptor de Hormona Paratiroídea Tipo 1/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIa/genética
18.
Anal Chem ; 89(24): 13120-13127, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29218986

RESUMEN

Developing surface-enhanced Raman spectroscopy (SERS) based biosensors requires not only synthesizing SERS active nanoparticles or nanoprobes that produce intense signal but also collecting them in a consistent manner to obtain sensitive and precise measurements. Nanoprobes are commonly measured in solution; however, this approach has several disadvantages that can reduce sensitivity, such as probing only a small percentage of the nanoprobes present in the sample. In this work, a novel collection device was designed, built, and tested which consistently concentrates nanoprobes in a specific area to yield highly sensitive (femtomolar) and repeatable measurements. A particular silica nanoprobe composed of aggregated silver nanoparticles with Raman reporters on them was synthesized and functionalized to measure it on the collection device. The collection device was assessed by collecting several concentrations of nanoprobes and comparing their SERS intensities to determine their limit of detection and the precision on the device. In addition, a competitive binding assay to detect cardiac Troponin I (cTnI) was used as an example to demonstrate the functionality of the nanoprobe and collection device. Nanoprobe samples (10 µL) were detected with less than 10% coefficient of variation (CV) across a range from nearly 27.4 fM to 1.7 pM using the described collection method. In the example assay, several cTnI concentrations ranging from 0 to 250 ng/mL were detected.

19.
Environ Sci Technol ; 51(1): 375-383, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-27997150

RESUMEN

Animal manure contributes considerably to ammonia (NH3) and greenhouse gas (GHG) emissions in Europe. Various treatment technologies have been implemented to reduce emissions and to facilitate its use as fertilizer, but a systematic analysis of these technologies has not yet been carried out. This study presents an integrated assessment of manure treatment effects on NH3, nitrous oxide (N2O) and methane (CH4) emissions from manure management chains in all countries of EU-27 in 2010 using the MITERRA-Europe model. Effects of implementing 12 treatment technologies on emissions and nutrient recovery were further explored through scenario analyses; the level of implementation corresponded to levels currently achieved by forerunner countries. Manure treatment decreased GHG emissions from manures in EU countries by 0-17% in 2010, with the largest contribution from anaerobic digestion; the effects on NH3 emissions were small. Scenario analyses indicate that increased use of slurry acidification, thermal drying, incineration and pyrolysis may decrease NH3 (9-11%) and GHG (11-18%) emissions; nitrification-denitrification treatment decreased NH3 emissions, but increased GHG emissions. The nitrogen recovery (% of nitrogen excreted in housings that is applied to land) would increase from a mean of 57% (in 2010) to 61% by acidification, but would decrease to 48% by incineration. Promoting optimized manure treatment technologies can greatly contribute to achieving NH3 and GHG emission targets set in EU environmental policies.


Asunto(s)
Estiércol , Óxido Nitroso , Amoníaco , Animales , Fertilizantes , Efecto Invernadero , Metano
20.
Clin Exp Ophthalmol ; 45(7): 689-694, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28263034

RESUMEN

IMPORTANCE: This study is the first paper to establish a learning curve by a single technician. BACKGROUND: Preparation of pre-cut corneal endothelial grafts commenced at Lions New South Wales Eye Bank in December 2014. The primary objective of this study was to review the safety and reliability of the preparation method during the first year of production. DESIGN: This is a hospital-based, prospective case series. PARTICIPANTS: There were 234 consecutive donor corneal lenticules. METHODS: Donor lenticules were prepared by a single operator using a linear cutting microkeratome. Immediately prior to cutting, central corneal thickness values were recorded. Measurements of the corneal bed were taken immediately following lenticule preparation. Outcomes were separated by blade sizes, and intended thickness was compared to actual thickness for each setting. Early specimens were compared to later ones to assess for a learning curve within the technique. MAIN OUTCOME MEASURE: The main parameter measured is the mean difference from intended lamellar cut thickness. RESULTS: The mean final cut thickness was 122.36 ± 20.35 µm, and the mean difference from intended cut was 30.17 ± 37.45 µm. No significant difference was found between results achieved with early specimens versus those achieved with later specimens (P = 0.425). CONCLUSIONS AND RELEVANCE: Thin, reproducible endothelial grafts can routinely be produced by trained technicians at their respective eye banks without significant concerns for an extended learning curve. This service can reduce perioperative surgical complexity, required surgical paraphernalia and theatre times. The consistent preparation of single-pass, ultrathin pre-cut corneas may have additional advantages for surgeons seeking to introduce lamellar techniques.


Asunto(s)
Queratoplastia Endotelial de la Lámina Limitante Posterior , Endotelio Corneal , Bancos de Ojos/métodos , Curva de Aprendizaje , Manejo de Especímenes , Recolección de Tejidos y Órganos , Recuento de Células , Humanos , Nueva Gales del Sur , Estudios Prospectivos , Reproducibilidad de los Resultados , Donantes de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA