Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 82(21): 4176-4188.e8, 2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36152632

RESUMEN

Stem cell division is linked to tumorigenesis by yet-elusive mechanisms. The hematopoietic system reacts to stress by triggering hematopoietic stem and progenitor cell (HSPC) proliferation, which can be accompanied by chromosomal breakage in activated hematopoietic stem cells (HSCs). However, whether these lesions persist in their downstream progeny and induce a canonical DNA damage response (DDR) remains unclear. Inducing HSPC proliferation by simulated viral infection, we report that the associated DNA damage is restricted to HSCs and that proliferating HSCs rewire their DDR upon endogenous and clastogen-induced damage. Combining transcriptomics, single-cell and single-molecule assays on murine bone marrow cells, we found accelerated fork progression in stimulated HSPCs, reflecting engagement of PrimPol-dependent repriming, at the expense of replication fork reversal. Ultimately, competitive bone marrow transplantation revealed the requirement of PrimPol for efficient HSC amplification and bone marrow reconstitution. Hence, fine-tuning replication fork plasticity is essential to support stem cell functionality upon proliferation stimuli.


Asunto(s)
Replicación del ADN , Hematopoyesis , Ratones , Animales , Hematopoyesis/genética , Células Madre Hematopoyéticas/fisiología , Daño del ADN , Proliferación Celular
2.
EMBO Rep ; 23(12): e55000, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36205653

RESUMEN

Germinal centers (GC) are microstructures where B cells that have been activated by antigen can improve the affinity of their B cell receptors and differentiate into memory B cells (MBCs) or antibody-secreting plasma cells. Here, we have addressed the role of activation-induced deaminase (AID), which initiates somatic hypermutation and class switch recombination, in the terminal differentiation of GC B cells. By combining single cell transcriptome and immunoglobulin clonal analysis in a mouse model that traces AID-experienced cells, we have identified a novel subset of late-prePB cells (L-prePB), which shares the strongest clonal relationships with plasmablasts (PBs). Mice lacking AID have various alterations in the size and expression profiles of transcriptional clusters. We find that AID deficiency leads to a reduced proportion of L-prePB cells and severely impairs transitions between the L-prePB and the PB subsets. Thus, AID shapes the differentiation fate of GC B cells by enabling PB generation from a prePB state.


Asunto(s)
Diferenciación Celular , Ratones , Animales
3.
Front Immunol ; 14: 1268930, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37809061

RESUMEN

Germinal centers (GCs) are the sites of secondary antibody diversification and underlie the mechanism of action of many vaccination strategies. Activation-induced deaminase (AID) triggers secondary antibody diversification through the introduction of somatic changes in immunoglobulin genes which lead to the generation of antibodies of higher affinity and more specialized effector functions. However, AID can also target other genomic regions, giving rise to mutations and chromosome translocations with oncogenic potential. Many human lymphomas originate from mature B cells that have undergone the GC reaction, such as the diffuse large B cell lymphoma, the follicular lymphoma and Burkitt lymphoma, and carry chromosome translocations. Mature B cell lymphomagenesis has been modeled in the mouse by the genetic introduction of chromosome translocations. Here, we present an in-depth characterization of one such model, λ-MYC mice. We found that young pre-tumor stage mice had a prominent block in early B cell differentiation that resulted in the generation of very aggressive tumors lacking surface B cell receptor (BCR) expression, indicating that a large fraction of tumors in λ-MYC mice arise from B cell precursors rather than from mature B cells. Further, we assessed the contribution of AID to B cell lymphomagenesis in λ-MYC mice by using a genetic tracer of historical AID expression. Only a fraction of tumors contained cells of GC origin as defined by AID expression. AID-experienced tumors associated with longer survival and resembled mature B cell lymphomas. Thus, AID expression defines Burkitt lymphomagenesis in λ-MYC mice.


Asunto(s)
Linfoma de Células B , Animales , Humanos , Ratones , Linfocitos B , Linfoma de Burkitt/genética , Linfoma de Burkitt/patología , Centro Germinal , Linfoma de Células B Grandes Difuso/patología , Translocación Genética , Linfoma de Células B/metabolismo
4.
Cell Death Dis ; 14(10): 687, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852959

RESUMEN

Diffuse large B cell lymphoma (DLBCL) is the most common aggressive B cell lymphoma and accounts for nearly 40% of cases of B cell non-Hodgkin lymphoma. DLBCL is generally treated with R-CHOP chemotherapy, but many patients do not respond or relapse after treatment. Here, we analyzed the therapeutic potential of the tumor suppressor microRNA-28 (miR-28) for DLBCL, alone and in combination with the Bruton's tyrosine kinase inhibitor ibrutinib. Combination therapy with miR-28 plus ibrutinib potentiated the anti-tumor effects of monotherapy with either agent by inducing a specific transcriptional cell-cycle arrest program that impairs DNA replication. The molecular actions of miR-28 and ibrutinib synergistically impair DNA replication by simultaneous inhibition of origin activation and fork progression. Moreover, we found that downregulation of the miR-28-plus-ibrutinib gene signature correlates with better survival of ABC-DLBCL patients. These results provide evidence for the effectiveness of a new miRNA-based ibrutinib combination therapy for DLBCL and unveil the miR-28-plus-ibrutinib gene signature as a new predictor of outcome in ABC-DLBCL patients.


Asunto(s)
Linfoma de Células B Grandes Difuso , MicroARNs , Humanos , Recurrencia Local de Neoplasia/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/patología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , MicroARNs/genética , MicroARNs/uso terapéutico , Terapia Combinada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA