Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Brain ; 146(1): 109-123, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36383415

RESUMEN

Loss of consciousness is a hallmark of many epileptic seizures and carries risks of serious injury and sudden death. While cortical sleep-like activities accompany loss of consciousness during focal impaired awareness seizures, the mechanisms of loss of consciousness during focal to bilateral tonic-clonic seizures remain unclear. Quantifying differences in markers of cortical activation and ictal recruitment between focal impaired awareness and focal to bilateral tonic-clonic seizures may also help us to understand their different consequences for clinical outcomes and to optimize neuromodulation therapies. We quantified clinical signs of loss of consciousness and intracranial EEG activity during 129 focal impaired awareness and 50 focal to bilateral tonic-clonic from 41 patients. We characterized intracranial EEG changes both in the seizure onset zone and in areas remote from the seizure onset zone with a total of 3386 electrodes distributed across brain areas. First, we compared the dynamics of intracranial EEG sleep-like activities: slow-wave activity (1-4 Hz) and beta/delta ratio (a validated marker of cortical activation) during focal impaired awareness versus focal to bilateral tonic-clonic. Second, we quantified differences between focal to bilateral tonic-clonic and focal impaired awareness for a marker validated to detect ictal cross-frequency coupling: phase-locked high gamma (high-gamma phased-locked to low frequencies) and a marker of ictal recruitment: the epileptogenicity index. Third, we assessed changes in intracranial EEG activity preceding and accompanying behavioural generalization onset and their correlation with electromyogram channels. In addition, we analysed human cortical multi-unit activity recorded with Utah arrays during three focal to bilateral tonic-clonic seizures. Compared to focal impaired awareness, focal to bilateral tonic-clonic seizures were characterized by deeper loss of consciousness, even before generalization occurred. Unlike during focal impaired awareness, early loss of consciousness before generalization was accompanied by paradoxical decreases in slow-wave activity and by increases in high-gamma activity in parieto-occipital and temporal cortex. After generalization, when all patients displayed loss of consciousness, stronger increases in slow-wave activity were observed in parieto-occipital cortex, while more widespread increases in cortical activation (beta/delta ratio), ictal cross-frequency coupling (phase-locked high gamma) and ictal recruitment (epileptogenicity index). Behavioural generalization coincided with a whole-brain increase in high-gamma activity, which was especially synchronous in deep sources and could not be explained by EMG. Similarly, multi-unit activity analysis of focal to bilateral tonic-clonic revealed sustained increases in cortical firing rates during and after generalization onset in areas remote from the seizure onset zone. Overall, these results indicate that unlike during focal impaired awareness, the neural signatures of loss of consciousness during focal to bilateral tonic-clonic consist of paradoxical increases in cortical activation and neuronal firing found most consistently in posterior brain regions. These findings suggest differences in the mechanisms of ictal loss of consciousness between focal impaired awareness and focal to bilateral tonic-clonic and may account for the more negative prognostic consequences of focal to bilateral tonic-clonic.


Asunto(s)
Epilepsias Parciales , Convulsiones , Humanos , Convulsiones/diagnóstico , Encéfalo , Electroencefalografía/métodos , Inconsciencia
2.
Neuroimage ; 253: 119047, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35276363

RESUMEN

Magnetoencephalography (MEG) allows for quantifying modulations of human neuronal activity on a millisecond time scale while also making it possible to estimate the location of the underlying neuronal sources. The technique relies heavily on signal processing and source modelling. To this end, there are several open-source toolboxes developed by the community. While these toolboxes are powerful as they provide a wealth of options for analyses, the many options also pose a challenge for reproducible research as well as for researchers new to the field. The FLUX pipeline aims to make the analyses steps and setting explicit for standard analysis done in cognitive neuroscience. It focuses on quantifying and source localization of oscillatory brain activity, but it can also be used for event-related fields and multivariate pattern analysis. The pipeline is derived from the Cogitate consortium addressing a set of concrete cognitive neuroscience questions. Specifically, the pipeline including documented code is defined for MNE Python (a Python toolbox) and FieldTrip (a Matlab toolbox), and a data set on visuospatial attention is used to illustrate the steps. The scripts are provided as notebooks implemented in Jupyter Notebook and MATLAB Live Editor providing explanations, justifications and graphical outputs for the essential steps. Furthermore, we also provide suggestions for text and parameter settings to be used in registrations and publications to improve replicability and facilitate pre-registrations. The FLUX can be used for education either in self-studies or guided workshops. We expect that the FLUX pipeline will strengthen the field of MEG by providing some standardization on the basic analysis steps and by aligning approaches across toolboxes. Furthermore, we also aim to support new researchers entering the field by providing education and training. The FLUX pipeline is not meant to be static; it will evolve with the development of the toolboxes and with new insights. Furthermore, with the anticipated increase in MEG systems based on the Optically Pumped Magnetometers, the pipeline will also evolve to embrace these developments.


Asunto(s)
Magnetoencefalografía , Procesamiento de Señales Asistido por Computador , Humanos , Magnetoencefalografía/métodos , Análisis Multivariante
3.
Neurocrit Care ; 35(Suppl 1): 37-54, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34236622

RESUMEN

AIM: In order to successfully detect, classify, prognosticate, and develop targeted therapies for patients with disorders of consciousness (DOC), it is crucial to improve our mechanistic understanding of how severe brain injuries result in these disorders. METHODS: To address this need, the Curing Coma Campaign convened a Mechanisms Sub-Group of the Coma Science Work Group (CSWG), aiming to identify the most pressing knowledge gaps and the most promising approaches to bridge them. RESULTS: We identified a key conceptual gap in the need to differentiate the neural mechanisms of consciousness per se, from those underpinning connectedness to the environment and behavioral responsiveness. Further, we characterised three fundamental gaps in DOC research: (1) a lack of mechanistic integration between structural brain damage and abnormal brain function in DOC; (2) a lack of translational bridges between micro- and macro-scale neural phenomena; and (3) an incomplete exploration of possible synergies between data-driven and theory-driven approaches. CONCLUSION: In this white paper, we discuss research priorities that would enable us to begin to close these knowledge gaps. We propose that a fundamental step towards this goal will be to combine translational, multi-scale, and multimodal data, with new biomarkers, theory-driven approaches, and computational models, to produce an integrated account of neural mechanisms in DOC. Importantly, we envision that reciprocal interaction between domains will establish a "virtuous cycle," leading towards a critical vantage point of integrated knowledge that will enable the advancement of the scientific understanding of DOC and consequently, an improvement of clinical practice.


Asunto(s)
Lesiones Encefálicas , Estado de Conciencia , Coma/diagnóstico , Coma/terapia , Trastornos de la Conciencia/diagnóstico , Trastornos de la Conciencia/terapia , Humanos
4.
Brain Inj ; 32(2): 242-246, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29182381

RESUMEN

PRIMARY OBJECTIVE: The aim of this study was to determine the validity of the Polish version of the Coma Recovery Scale-Revised (CRS-R). METHODS AND DESIGN: Two trained raters, A and B, administered CRS-R on a group of 20 patients with severe brain injury (median age ± SD, 38.0 ± 14.39 years). Both rater A and rater B completed their assessment on day 1, and rater A repeated their assessment on day 2. Inter-rater and test-retest reliability were evaluated with an intra-class correlation coefficient and Spearman rank correlation. Internal consistency was estimated with Cronbach's α. Agreement in diagnostic impression was determined using Cohen's κ. RESULTS: Inter-rater reliability for CRS-R total scores and test-retest reliability was excellent: (ρ = 0.76, p < 0.001) and (ρ = 0.92, p < 0.001), respectively. Inter-rater diagnostic agreement was good (κ = 0.72, p < 0.001). Inter-rater reliability for subscales was fair to excellent. Internal consistency was excellent (Cronbach's α = 0.85). CONCLUSION: The Polish version of CRS-R can be administered reliably by trained raters and can successfully differentiate between vegetative state (VS), minimally conscious (MCS), and patients emerging from a minimally conscious state (EMCS).


Asunto(s)
Trastornos de la Conciencia/diagnóstico , Trastornos de la Conciencia/fisiopatología , Recuperación de la Función/fisiología , Adulto , Anciano , Coma/fisiopatología , Estado de Conciencia , Femenino , Escala de Coma de Glasgow , Humanos , Masculino , Persona de Mediana Edad , Estado Vegetativo Persistente/diagnóstico , Polonia , Reproducibilidad de los Resultados , Traducción
6.
PLoS One ; 18(2): e0268577, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36763595

RESUMEN

The relationship between conscious experience and brain activity has intrigued scientists and philosophers for centuries. In the last decades, several theories have suggested different accounts for these relationships. These theories have developed in parallel, with little to no cross-talk among them. To advance research on consciousness, we established an adversarial collaboration between proponents of two of the major theories in the field, Global Neuronal Workspace and Integrated Information Theory. Together, we devised and preregistered two experiments that test contrasting predictions of these theories concerning the location and timing of correlates of visual consciousness, which have been endorsed by the theories' proponents. Predicted outcomes should either support, refute, or challenge these theories. Six theory-impartial laboratories will follow the study protocol specified here, using three complementary methods: Functional Magnetic Resonance Imaging (fMRI), Magneto-Electroencephalography (M-EEG), and intracranial electroencephalography (iEEG). The study protocol will include built-in replications, both between labs and within datasets. Through this ambitious undertaking, we hope to provide decisive evidence in favor or against the two theories and clarify the footprints of conscious visual perception in the human brain, while also providing an innovative model of large-scale, collaborative, and open science practice.


Asunto(s)
Estado de Conciencia , Teoría de la Información , Humanos , Estado de Conciencia/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Percepción Visual , Electroencefalografía
7.
Cell Calcium ; 101: 102503, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34844123

RESUMEN

In some lysosomal storage diseases (LSD) cholesterol accumulates in vesicles. Whether increased vesicle cholesterol affects vesicle fusion with the plasmalemma, where the fusion pore, a channel between the vesicle lumen and the extracellular space, is formed, is unknown. Super-resolution microscopy revealed that after stimulation of exocytosis, pituitary lactotroph vesicles discharge cholesterol which transfers to the plasmalemma. Cholesterol depletion in lactotrophs and astrocytes, both exhibiting Ca2+-dependent exocytosis regulated by distinct Ca2+sources, evokes vesicle secretion. Although this treatment enhanced cytosolic levels of Ca2+ in lactotrophs but decreased it in astrocytes, this indicates that cholesterol may well directly define the fusion pore. In an attempt to explain this mechanism, a new model of cholesterol-dependent fusion pore regulation is proposed. High-resolution membrane capacitance measurements, used to monitor fusion pore conductance, a parameter related to fusion pore diameter, confirm that at resting conditions reducing cholesterol increases, while enrichment with cholesterol decreases the conductance of the fusion pore. In resting fibroblasts, lacking the Npc1 protein, a cellular model of LSD in which cholesterol accumulates in vesicles, the fusion pore conductance is smaller than in controls, showing that vesicle cholesterol controls fusion pore and is relevant for pathophysiology of LSD.


Asunto(s)
Exocitosis , Lactotrofos , Animales , Membrana Celular , Colesterol , Fusión de Membrana , Ratas , Ratas Wistar , Vesículas Secretoras
8.
Neuroimage Clin ; 27: 102261, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32388346

RESUMEN

OBJECTIVE: Due to the problems with behavioral diagnosis of patients with prolonged DOC (disorders of consciousness), complementary approaches based on objective measurement of neural function are necessary. In this pilot study, we assessed the sensitivity of auditory chirp-evoked responses to the state of patients with severe brain injury as measured with CRS-R (Coma Recovery Scale - Revised). METHODS: A convenience sample of fifteen DOC patients was included in the study. Auditory stimuli, chirp-modulated at 1-120 Hz were used to evoke auditory steady-state response (ASSR). Phase-locking index (PLI) estimates within low gamma and high gamma windows were evaluated. RESULTS: The PLI estimates within a narrow low gamma 38-42 Hz window positively correlated with the CRS-R total score and with the scores of the Auditory and Visual Function subscales. In the same low gamma window, significant difference in the PLIs was found between minimally conscious (MCS) and vegetative state (VS) patients. We did not observe any between-group differences nor any significant correlations with CRS-R scores in the high gamma window (80-110 Hz). CONCLUSIONS: Our results support the notion that the activity around 40 Hz may serve as a possible marker of the integrity of thalamocortical networks in prolonged DOC patients. SIGNIFICANCE: Auditory steady-state responses at gamma-band frequencies highlight the role of upper parts of auditory system in evaluation of the level of consciousness in DOC patients.


Asunto(s)
Trastornos de la Conciencia/fisiopatología , Estado de Conciencia/fisiología , Potenciales Evocados Auditivos/fisiología , Estado Vegetativo Persistente/fisiopatología , Estimulación Acústica/métodos , Adulto , Anciano , Trastornos de la Conciencia/diagnóstico por imagen , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neuroimagen/métodos , Estado Vegetativo Persistente/diagnóstico por imagen , Proyectos Piloto
9.
Int J Psychophysiol ; 135: 44-54, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30452935

RESUMEN

Previous research on auditory steady-state responses (ASSRs) demonstrated sensitivity of 40 Hz ASSR to changes in the level of arousal, both in sleep and in general anaesthesia. In this study we extended the range of stimulation frequencies, using also low and medium stimulation frequencies (4, 6, 8, 12, 20, 40 Hz) and studied their susceptibility to the loss of consciousness in NREM sleep (N2 and N3 stages). Effects of NREM sleep were examined in power domain with relative power (RP), and in phase domain using inter-trial phase coherence (PC) parameter. The activity in power domain was also compared to no-stimulation data. Regions displaying significant waking-NREM sleep differences were selected using non-parametric suprathreshold cluster test. For 4, 6, 20 and 40 Hz stimulation relative power of ASSRs was lower in NREM sleep, with maximal change for 40 Hz stimulation. This decrease was not seen in no-stimulation condition. For all stimulation frequencies (except 12 Hz) we observed decrease of phase coherence of ASSR during NREM sleep. Our results demonstrate that low and medium frequency ASSRs are state-sensitive, thus susceptible to loss of consciousness during NREM sleep. Diminishing of power and phase coherence may result from cortical down states and/or thalamic inhibition. Our results support possible use of low- and medium-frequency ASSRs for discrimination between states of altered consciousness and emphasize the role of the auditory system in determining these variations.


Asunto(s)
Estimulación Acústica/métodos , Percepción Auditiva/fisiología , Electroencefalografía/métodos , Potenciales Evocados Auditivos/fisiología , Fases del Sueño/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
10.
Int J Psychophysiol ; 144: 56-62, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31381936

RESUMEN

Diagnosis of consciousness in patients with prolonged disorders of consciousness (PDOC) remains challenging since their responsiveness is often very impaired, while their assessment depends on observable behavior. The aim of this proof-of-concept study was to evaluate whether low- and medium-rate amplitude-modulated (AM) auditory steady-state responses (ASSRs) can be sensitive to the state of PDOC patients and may thus serve as a diagnostic tool which does not explicitly depend on a patient's cooperation. EEG was recorded from nine unresponsive wakefulness syndrome/vegetative state (UWS/VS) and eight minimally conscious state (MCS)/emergence from MCS patients during stimulation with two-minute trains of simple tones, amplitude modulated (AM) by 4 Hz, 6 Hz, 8 Hz, 12 Hz, 20 Hz, 40 Hz. The obtained ASSRs were then related to the Coma Recovery Scale - Revised (CRS-R) diagnosis and its total score. We observed significant correlations between mean inter-trial phase coherence (PC) (averaged across all stimulation frequencies) and total CRS-R score, as well as between 40 Hz relative power (RP) and total CRS-R score. Moreover, both parameters significantly differed between the patient groups. Our preliminary results suggest that a passive auditory stimulation protocol consisting of low- and medium-rate ASSRs might be used as an objective estimate of the level of neural dysfunction in PDOC patients. Consequently, the integrity of the auditory system appears to be an important predictor of the actual state of consciousness in PDOC patients.


Asunto(s)
Percepción Auditiva/fisiología , Trastornos de la Percepción Auditiva/fisiopatología , Corteza Cerebral/fisiopatología , Electroencefalografía/métodos , Audición/fisiología , Estado Vegetativo Persistente/fisiopatología , Estimulación Acústica , Adolescente , Adulto , Anciano , Trastornos de la Percepción Auditiva/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estado Vegetativo Persistente/diagnóstico , Índice de Severidad de la Enfermedad , Adulto Joven
11.
eNeuro ; 5(2)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29662943

RESUMEN

Many natural sounds can be well described on a statistical level, for example, wind, rain, or applause. Even though the spectro-temporal profile of these acoustic textures is highly dynamic, changes in their statistics are indicative of relevant changes in the environment. Here, we investigated the neural representation of change detection in natural textures in humans, and specifically addressed whether active task engagement is required for the neural representation of this change in statistics. Subjects listened to natural textures whose spectro-temporal statistics were modified at variable times by a variable amount. Subjects were instructed to either report the detection of changes (active) or to passively listen to the stimuli. A subset of passive subjects had performed the active task before (passive-aware vs passive-naive). Psychophysically, longer exposure to pre-change statistics was correlated with faster reaction times and better discrimination performance. EEG recordings revealed that the build-up rate and size of parieto-occipital (PO) potentials reflected change size and change time. Reduced effects were observed in the passive conditions. While P2 responses were comparable across conditions, slope and height of PO potentials scaled with task involvement. Neural source localization identified a parietal source as the main contributor of change-specific potentials, in addition to more limited contributions from auditory and frontal sources. In summary, the detection of statistical changes in natural acoustic textures is predominantly reflected in parietal locations both on the skull and source level. The scaling in magnitude across different levels of task involvement suggests a context-dependent degree of evidence integration.


Asunto(s)
Percepción Auditiva/fisiología , Discriminación en Psicología/fisiología , Electroencefalografía/métodos , Potenciales Evocados Auditivos/fisiología , Lóbulo Parietal/fisiología , Adulto , Corteza Auditiva/fisiología , Femenino , Lóbulo Frontal/fisiología , Humanos , Masculino , Adulto Joven
12.
Clin Neurophysiol ; 128(5): 799-806, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28319881

RESUMEN

OBJECTIVE: We aimed to elucidate whether 40Hz auditory steady-state response (ASSR) could be sensitive to the state of patients with disorders of consciousness (DOC) as estimated with Coma Recovery Scale-Revised (CRS-R) diagnostic tool. METHODS: Fifteen DOC patients and 24 healthy controls took part in the study. The 40Hz click trains were used to evoke ASSRs. Mean evoked amplitude (EA) and phase-locking index (PLI) within 38-42Hz window were calculated for 100ms bins, starting from -200 to 700ms relative to stimulus onset. RESULTS: The PLI values from the patient group in the period of 200-500ms after the stimulus onset positively correlated with the CRS-R total score and with the scores of the Auditory and Visual subscales. CONCLUSIONS: The phase-locking index of 40Hz auditory steady-state responses can be an indicator of the level of dysfunction of the central nervous system in DOC. SIGNIFICANCE: Our results emphasize the role of central auditory system integrity in determining the level of functioning of DOC patients and suggest the possibility to use the ASSR protocol as an objective diagnostic method in DOC patients.


Asunto(s)
Trastornos de la Conciencia/diagnóstico , Potenciales Evocados Auditivos , Índices de Gravedad del Trauma , Adulto , Anciano , Estudios de Casos y Controles , Trastornos de la Conciencia/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad
13.
Elife ; 62017 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-28262095

RESUMEN

Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva , Estimulación Acústica , Electroencefalografía , Humanos , Modelos Neurológicos , Psicofísica
14.
Channels (Austin) ; 9(2): 96-101, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25835258

RESUMEN

In regulated exocytosis vesicular and plasma membranes merge to form a fusion pore in response to stimulation. The nonselective cation HCN channels are involved in the regulation of unitary exocytotic events by at least 2 mechanisms. They can affect SNARE-dependent exocytotic activity indirectly, via the modulation of free intracellular calcium; and/or directly, by altering local cation concentration, which affects fusion pore geometry likely via electrostatic interactions. By monitoring membrane capacitance, we investigated how extracellular cation concentration affects fusion pore diameter in pituitary cells and astrocytes. At low extracellular divalent cation levels predominantly transient fusion events with widely open fusion pores were detected. However, fusion events with predominately narrow fusion pores were present at elevated levels of extracellular trivalent cations. These results show that electrostatic interactions likely help determine the stability of discrete fusion pore states by affecting fusion pore membrane composition.


Asunto(s)
Membrana Celular/metabolismo , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canales de Potasio/metabolismo , Electricidad Estática , Aluminio/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Electromiografía , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/antagonistas & inhibidores , Fusión de Membrana , Tamaño de la Partícula , Pirimidinas/farmacología , Ratas , Ratas Wistar
15.
Artículo en Inglés | MEDLINE | ID: mdl-23848694

RESUMEN

In studying the dehydration of surface-moistened fumed silica Aerosil powders, we found a conductivity percolation transition at low hydration levels. Both the percolation exponent and the threshold are typical for correlated site-bond transitions in complex two-dimensional (2D) systems. The exponent values, 0.94-1.10, are indicative of severe heterogeneity in the conducting medium. The surface moisture at the percolation threshold takes on a universal value of 0.65 mg([H2O])/m(2)([silica]), independent of the silica grain size, and equivalent to twice the first hydration monolayer. This level is just sufficient to sustain a quasi-2D, hydrogen-bonded water network spanning the silica surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA